Jun FURUTA Shotaro SUGITANI Ryuichi NAKAJIMA Takafumi ITO Kazutoshi KOBAYASHI
Radiation-induced temporal errors become a significant issue for circuit reliability. We measured the pulse widths of radiation-induced single event transients (SETs) from pMOSFETs and nMOSFETs separately. Test results show that heavy-ion induced SET rates of nMOSFETs were twice as high as those of pMOSFETs and that neutron-induced SETs occurred only in nMOSFETs. It was confirmed that the SET distribution from inverter chains can be estimated using the SET distribution from pMOSFETs and nMOSFETs by considering the difference in load capacitance of the measurement circuits.
Yasushi YUMINAKA Kazuharu NAKAJIMA Yosuke IIJIMA
This study investigates a two/three-dimensional (2D/3D) symbol-mapping technique that evaluates data transmission quality based on a four-level pulse-amplitude modulation (PAM-4) symbol transition. Multi-dimensional symbol transition mapping facilitates the visualization of the degree of interference (ISI). The simulation and experimental results demonstrated that the 2D symbol mapping can evaluate the PAM-4 data transmission quality degraded by ISI and visualize the equalization effect. Furthermore, potential applications of 2D mapping and its extension to 3D mapping were explored.
Masato YOSHIDA Kosuke KIMURA Toshihiko HIROOKA Keisuke KASAI Masataka NAKAZAWA
We compare the demodulation performance of an analog OTDM demultiplexing scheme and digitized OTDM demultiplexing with an ultrahigh-speed digital signal processor in a single-channel OTDM coherent Nyquist pulse transmission. We evaluated the demodulation performance for 40, 80, and 160Gbaud OTDM signals with a baseline rate of 10Gbaud. As a result, we clarified that the analog scheme performs significantly better since the bandwidth for handling the demultiplexed signal is as narrow as 10GHz regardless of the symbol rate. This enables us to use a low-speed A/D converter (ADC) with a large effective number of bits (ENOB). On the other hand, in the digital scheme, the higher the symbol rate becomes, the more bandwidth the receiver requires. Therefore, it is necessary to use an ultrahigh-speed ADC with a low ENOB for a 160Gbaud signal. We measured the ENOB of the ultrahigh-speed ADC used in the digital scheme and showed that the measured ENOB was approximately 1.5 bits lower than that of the low-speed ADC used in the analog scheme. This 1.5-bit decrease causes a large degradation in the demodulation performance obtained with the digital demultiplexing scheme.
Wataru KOBAYASHI Shigeru KANAZAWA Takahiko SHINDO Manabu MITSUHARA Fumito NAKAJIMA
We evaluated the energy efficiency per 1-bit transmission of an optical light source on InP substrate to achieve optical interconnection. A semiconductor optical amplifier (SOA) assisted extended reach EADFB laser (AXEL) was utilized as the optical light source to enhance the energy efficiency compared to the conventional electro-absorption modulator integrated with a DFB laser (EML). The AXEL has frequency bandwidth extendibility for operation of over 100Gbit/s, which is difficult when using a vertical cavity surface emitting laser (VCSEL) without an equalizer. By designing the AXEL for low power consumption, we were able to achieve 64-Gbit/s, 1.0pJ/bit and 128-Gbit/s, 1.5pJ/bit operation at 50°C with the transmitter dispersion and eye closure quaternary of 1.1dB.
Tomoya FUKAMI Hirobumi SAITO Akira HIROSE
This paper proposes an accurate and efficient method to calculate probability distributions of pulse-shaped complex signals. We show that the distribution over the in-phase and quadrature-phase (I/Q) complex plane is obtained by a recursive probability mass function of the accumulator for a pulse-shaping filter. In contrast to existing analytical methods, the proposed method provides complex-plane distributions in addition to instantaneous power distributions. Since digital signal processing generally deals with complex amplitude rather than power, the complex-plane distributions are more useful when considering digital signal processing. In addition, our approach is free from the derivation of signal-dependent functions. This fact results in its easy application to arbitrary constellations and pulse-shaping filters like Monte Carlo simulations. Since the proposed method works without numerical integrals and calculations of transcendental functions, the accuracy degradation caused by floating-point arithmetic is inherently reduced. Even though our method is faster than Monte Carlo simulations, the obtained distributions are more accurate. These features of the proposed method realize a novel framework for evaluating the characteristics of pulse-shaped signals, leading to new modulation, predistortion and peak-to-average power ratio (PAPR) reduction schemes.
Hiroki KAWAHARA Koji IGARASHI Kyo INOUE
This study numerically investigates the symbol-level allocation of four-level pulse-amplitude modulation (PAM4) signals for optically pre-amplified receiver systems. Three level-allocation schemes are examined: intensity-equispaced, amplitude-equispaced, and numerically optimized. Numerical simulations are conducted to comprehensively compare the receiver sensitivities for these level-allocation schemes under various system conditions. The results show that the superiority or inferiority between the level allocations is significantly dependent on the system conditions of the bandwidth of amplified spontaneous emission light, modulation bandwidth, and signal extinction ratio (ER). The mechanisms underlying these dependencies are also discussed.
We discuss the spectral efficiency of orthogonal frequency-division multiplexing (OFDM) signals widely adopted in practical systems from a viewpoint of their power spectral density property. Since the conventional OFDM does not make use of pulse shaping filter, its out-of-band (OOB) spectrum may not be negligible especially when the number of subcarriers is small. Thus, in practice, windowing is applied to mitigate OOB emission by smoothing the transition of consecutive OFDM symbols, but its effectiveness has not been well investigated. Furthermore, OFDM signal suffers from nonlinear distortion associated with its high signal peak-to-average power ratio (PAPR), which also leads to OOB radiation. We examine how power amplifier nonlinearity affects the spectral efficiency based on the theoretical results developed in the literature.
Mamoru UGAJIN Yuya KAKEI Nobuyuki ITOH
Quadrature voltage-controlled oscillators (VCOs) with current-weight-average and voltage-weight-average phase-adjusting architectures are studied. The phase adjusting equalizes the oscillation frequency to the LC-resonant frequency. The merits of the equalization are explained by using Leeson's phase noise equation and the impulse sensitivity function (ISF). Quadrature VCOs with the phase-adjusting architectures are fabricated using 180-nm TSMC CMOS and show low-phase-noise performances compared to a conventional differential VCO. The ISF analysis and small-signal analysis also show that the drawbacks of the current-weight-average phase-adjusting and voltage-weight-average phase-adjusting architectures are current-source noise effect and large additional capacitance, respectively. A voltage-average-adjusting circuit with a source follower at its input alleviates the capacitance increase.
Toshihiro ITO Shoji MATSUDA Yoshiya KASAHARA
Distributed array radars consist of multiple sub-arrays separated by tens to hundreds of wavelengths and can match narrow beamwidths with large-aperture, high-gain antennas. The physical independence of the sub-arrays contributes to significant structure flexibility and is one of the advantages of such radars. However, a typical problem is the grating lobes in the digital beam forming (DBF) beam pattern. Unfortunately, the need to suppress the generation of grating lobes makes the design of acceptable sub-array arrangements very difficult. A sigma-delta beam former direction of arrival (DOA) estimation method is proposed in this study to solve this problem. The proposed method performs DOA estimation by acquiring the difference signals in addition to the sum signals of all sub-arrays. The difference signal is typically used for monopulse DOA estimation in the phased array radar. The sigma-delta beamformer simultaneously has both advantages of DOA estimations using a distributed array with a large aperture length and using a sub-array that is not affected by the grating lobe. The proposed method can improve the DOA estimation accuracy over the conventional method under grating lobe situations and help the distributed array radar achieve flexibility in the sub-array arrangement. Numerical simulations are presented to verify the effectiveness of the proposed DOA estimation method.
Takumi HAYASHI Takeru ANDO Shouhei KIDERA
In this study, we propose an accurate range-Doppler analysis algorithm for moving multiple objects in a short range using microwave (including millimeter wave) radars. As a promising Doppler analysis for the above model, we previously proposed a weighted kernel density (WKD) estimator algorithm, which overcomes several disadvantages in coherent integration based methods, such as a trade-off between temporal and frequency resolutions. However, in handling multiple objects like human body, it is difficult to maintain the accuracy of the Doppler velocity estimation, because there are multiple responses from multiple parts of object, like human body, incurring inaccuracies in range or Doppler velocity estimation. To address this issue, we propose an iterative algorithm by exploiting an output of the WKD algorithm. Three-dimensional numerical analysis, assuming a human body model in motion, and experimental tests demonstrate that the proposed algorithm provides more accurate, high-resolution range-Doppler velocity profiles than the original WKD algorithm, without increasing computational complexity. Particularly, the simulation results show that the cumulative probabilities of range errors within 10mm, and Doppler velocity error within 0.1m/s are enhanced from 34% (by the former method) to 63% (by the proposed method).
This brief presents A 16/32Gb/s dual-mode transmitter including a linearity calibration loop to maintain amplitude linearity of the SST driver. Linearity detection and corresponding master-slave power supply circuits are designed to implement the proposed architecture. The proposed transmitter is manufactured in a 22nm FD-SOI process. The linearity calibration loop reduces the peak INL errors of the transmitter by 50%, and the RLM rises from 92.4% to 98.5% when the transmitter is in PAM4 mode. The chip area of the transmitter is 0.067mm2, while the proposed linearity enhanced part is 0.05×0.02mm2 and the total power consumption is 64.6mW with a 1.1V power supply. The linearity calibration loop can be detached from the circuit without consuming extra power.
Kosuke KIMURA Masato YOSHIDA Keisuke KASAI Toshihiko HIROOKA Masataka NAKAZAWA
In this paper, we report an experimental and numerical analysis of ultrahigh-speed coherent Nyquist pulse transmission. First, we describe a low-nonlinearity dispersion compensator for ultrahigh-speed coherent Nyquist pulse transmission; it is composed of a chirped fiber Bragg grating (CFBG) and a liquid crystal on silicon (LCoS) device. By adopting CFBG instead of inverse dispersion fiber, the nonlinearity in a 160km transmission line was more than halved. Furthermore, by eliminating the group delay fluctuation of the CFBG with an LCoS device, the residual group delay was reduced to as low as 1.42ps over an 11nm bandwidth. Then, by using the transmission line with the newly constructed low-nonlinearity dispersion compensator, we succeeded in improving the BER performance of single-channel 15.3Tbit/s-160km transmission by one-third compared with that of a conventional dispersion-managed transmission line and obtained a spectral efficiency of 8.7bit/s/Hz. Furthermore, we numerically analyzed the BER performance of its Nyquist pulse transmission. The numerical results showed that the nonlinear impairment in the transmission line is the main factor limiting the transmission performance in a coherent Nyquist pulse transmission, which becomes more significant at higher baud rates.
This paper presents a novel blind signal separation method for the measurement of pulse waves at multiple body positions using an array radar system. The proposed method is based on a mathematical model of pulse wave propagation. The model relies on three factors: (1) a small displacement approximation, (2) beam pattern orthogonality, and (3) an impulse response model of pulse waves. The separation of radar echoes is formulated as an optimization problem, and the associated objective function is established using the mathematical model. We evaluate the performance of the proposed method using measured radar data from participants lying in a prone position. The accuracy of the proposed method, in terms of estimating the body displacements, is measured using reference data taken from laser displacement sensors. The average estimation errors are found to be 10-21% smaller than those of conventional methods. These results indicate the effectiveness of the proposed method for achieving noncontact measurements of the displacements of multiple body positions.
Jerdvisanop CHAKAROTHAI Katsumi FUJII Yukihisa SUZUKI Jun SHIBAYAMA Kanako WAKE
In this study, we develop a numerical method for determining transient energy deposition in biological bodies exposed to electromagnetic (EM) pulses. We use a newly developed frequency-dependent finite-difference time-domain (FD2TD) method, which is combined with the fast inverse Laplace transform (FILT) and Prony method. The FILT and Prony method are utilized to transform the Cole-Cole model of biological media into a sum of multiple Debye relaxation terms. Parameters of Debye terms are then extracted by comparison with the time-domain impulse responses. The extracted parameters are used in an FDTD formulation, which is derived using the auxiliary differential equation method, and transient energy deposition into a biological medium is calculated by the equivalent circuit method. The validity of our proposed method is demonstrated by comparing numerical results and those derived from an analytical method. Finally, transient energy deposition into human heads of TARO and HANAKO models is then calculated using the proposed method and, physical insights into pulse exposures of the human heads are provided.
Ryosuke OZAKI Tsuneki YAMASAKI
In our previous paper, we have proposed a new numerical technique for transient scattering problem of periodically arrayed dispersion media by using a combination of the fast inversion Laplace transform (FILT) method and Fourier series expansion method (FSEM), and analyzed the pulse response for several widths of the dispersion media or rectangular cavities. From the numerical results, we examined the influence of a periodically arrayed dispersion media with a rectangular cavity on the pulse response. In this paper, we analyzed the transient scattering problem for the case of dispersion media with slanted air regions by utilizing a combination of the FILT, FSEM, and multilayer division method (MDM), and investigated an influence for the slanted angle of an air region. In addition, we verified the computational accuracy for term of the MDM and truncation mode number of the electromagnetic fields.
Exponential growth in data volumes has promoted widespread interest in data-selective adaptive algorithms. In a pioneering work, Diniz developed the data-selective least mean square (DS-LMS) algorithm, which is able to reduce specific quantities of computation data without compromising performance. Note however that the existing framework fails to consider the issue of impulse noise (IN), which can greatly undermine the benefits of reduced computation. In this letter, we present an error-based IN detection algorithm for implementation in conjunction with the DS-LMS algorithm. Numerical evaluations confirm the effectiveness of our proposed IN-tolerant DS-LMS algorithm.
Huakang XIA Yidie YE Xiudeng WANG Ge SHI Zhidong CHEN Libo QIAN Yinshui XIA
A self-powered flyback pulse resonant circuit (FPRC) is proposed to extract energy from piezoelectric (PEG) and thermoelectric generators (TEG) simultaneously. The FPRC is able to cold start with the PEG voltage regardless of the TEG voltage, which means the TEG energy is extracted without additional cost. The measurements show that the FPRC can output 102 µW power under the input PEG and TEG voltages of 2.5 V and 0.5 V, respectively. The extracted power is increased by 57.6% compared to the case without TEGs. Additionally, the power improvement with respect to an ideal full-wave bridge rectifier is 2.71× with an efficiency of 53.9%.
Applications of continuous-time (CT) comparator include relaxation oscillators, pulse width modulators, and so on. CT comparator receives a differential input and outputs a strobe ideally when the differential input crosses zero. Unlike the DT comparators with positive feedback circuit, amplifiers consuming static power must be employed in CT comparators to amplify the input signal. Therefore, minimization of comparator delay under the constraint of power consumption often becomes an issue. This paper analyzes transient behavior of a CT comparator. Using “constant delay approximation”, the comparator delay is derived as a function of input slew rate, number of stages of the preamplifier, and device parameters in each block. This paper also discusses optimum design of the CT comparator. The condition for minimum comparator delay is derived with keeping power consumption constant. The results include that the optimum DC gain of the preamplifier is e∼e3 per stage depending on the element which dominates load capacitance of the preamplifier.
Masayoshi NAKAMOTO Naoyuki AIKAWA
Recent trends in designing filters involve development of sparse filters with coefficients that not only have real but also zero values. These sparse filters can achieve a high performance through optimizing the selection of the zero coefficients and computing the real (non-zero) coefficients. Designing an infinite impulse response (IIR) sparse filter is more challenging than designing a finite impulse response (FIR) sparse filter. Therefore, studies on the design of IIR sparse filters have been rare. In this study, we consider IIR filters whose coefficients involve zero value, called sparse IIR filter. First, we formulate the design problem as a linear programing problem without imposing any stability condition. Subsequently, we reformulate the design problem by altering the error function and prepare several possible denominator polynomials with stable poles. Finally, by incorporating these methods into successive thinning algorithms, we develop a new design algorithm for the filters. To demonstrate the effectiveness of the proposed method, its performance is compared with that of other existing methods.
A scheme is proposed for generation of large-amplitude short pulses using a transmission line with regularly spaced series-connected tunnel diodes (TDs). In the case where the loaded TD is unique, it is established that the leading edge of the inputted pulse moves slower than the trailing edge, when the pulse amplitude exceeds the peak voltage of the loaded TD; therefore, the pulse width is autonomously reduced through propagation in the line. In this study, we find that this property is true even when the several series-connected TDs are loaded periodically. By these mechanisms, the TD line succeeds in generating large and short pulses. Herein, we clarify the design criteria of the TD line, together with both numerical and experimental validation.