We describe in this paper our experience of developing a large-scale, highly distributed multi-agent system using wireless-networked sensors. We provide solutions to the problems of localization (position estimation) and dynamic, real-time mobile object tracking, which we call PET problems for short, using wireless sensor networks. We propose system architectures and a set of distributed algorithms for organizing and scheduling cooperative computation in distributed environments, as well as distributed algorithms for localization and real-time object tracking. Based on these distributed algorithms, we develop and implement a hardware system and software simulator for the PET problems. Finally, we present some experimental results on distance measurement accuracy using radio signal strengths of the wireless sensors and discuss future work.
Yoshiro TAKIGUCHI Katsunori OSADA Masakazu NANBA Kazunori MIYAKAWA Saburo OKAZAKI Toshio YAMAGISHI Kenkichi TANIOKA Masahide ABE Norifumi EGAMI Mitsuru TANAKA Shigeo ITOH
To investigate the feasibility of a compact FEA image sensor with a large number of pixels, a 128 96 pixel FEA image sensor with a 4-µm-thick HARP target was fabricated and tested for the first time. The experimental results showed that the prototype could stably operate as a highly sensitive image sensor having both sufficient resolution corresponding to the number of pixels and a wide dynamic range, which demonstrated its potential as a next-generation image sensor.
Raghuvel Subramaniam BHUVANESWARAN Jacir L. BORDIM Jiangtao CUI Koji NAKANO
The main contribution of this work is to propose energy-efficient protocols that compute the sum of n numbers over any commutative and associative binary operator stored in n wireless sensor nodes arranged in a two-dimensional grid of size nn. We first present a protocol that computes the sum on a Wireless Sensor Network (WSN) in O(r2+(n/r2)1/3) time slots with no sensor node being awake for more than O(1) time slots, where r is the transmission range of the sensor nodes. We then go on to present a fault-tolerant protocol which computes the sum in the same number of time slots with no sensor node being awake for more than O(log r) time slots. Finally, we show that in a WSN where the sensor nodes are empowered with the ability to dynamically adjust their transmission range r during the execution of the protocol, the sum can be computed in O(log n) time slots and no sensor node needs to awake for more than O(log n) time slots.
Masaki HASHIZUME Teppei TAKEDA Masahiro ICHIMIYA Hiroyuki YOTSUYANAGI Yukiya MIURA Kozo KINOSHITA
In this paper, a useful technique is proposed for realizing high speed IDDQ tests. By using the technique, load capacitors of the CMOS logic gates can be charged quickly, whose output logic values change from L to H by applying a test input vector to a circuit under test. The technique is applied to built-in IDDQ sensor design and external IDDQ sensor design. It is shown experimentally that high speed IDDQ tests can be realized by using the technique.
Yusuke OIKE Makoto IKEDA Kunihiro ASADA
We propose a high-sensitivity and wide-dynamic-range position sensor using logarithmic-response and correlation circuit. The 3-D measurement system using the proposed position sensor has advantages to applications, for example a walking robot and a recognition system on vehicles, which require both of availability in various backgrounds and safe light projection for human eyes. The position sensor with a 64 64 pixel array has been developed and successfully tested. We describe the sensitivity of position detection as SBR (Signal-to-Background Ratio). The minimum SBR of the sensor is -13.9 dB lower than standard sensors. High sensitivity under -10 dB SBR is realized in a dynamic range of 41.7 dB in terms of background illumination. Experimental results of position detection and 3-D measurement in a strong background illumination are also presented.
Kousuke KATAYAMA Atsushi IWATA Takashi MORIE Makoto NAGATA
A circuit that carries out an Hadamard transform of an input image using the pulse width modulation technique is proposed. The proposed circuit architecture realizes the function of an Hadamard transform with a full-size pixel image. A test chip that we designed and fabricated integrates 64 64 pixels in a 4.9 mm 4.9 mm area, with 0.35 µm CMOS technology. The functional operation and linearity of this chip are measured. An image processing application utilizing this chip is demonstrated.
Severino MUÑOZ Takamichi NAKAMOTO Toyosaka MORIIZUMI
A study of apple flavor, banana flavor, and their chemical components was performed using an array of quartz crystal microbalance (QCM) gas sensors coated with sensing films such as lipids or stationary phase materials for gas chromatography (GC). The steady state sensor responses measured by a static measurement system were used to evaluate the characteristics of the different samples by principal component analysis (PCA) method. Since the array has shown good discrimination properties for fruit flavor components providing useful information, it was used to investigate the components that primarily contribute to the odor of the flavors. The results obtained from principal components analysis aided by sensory test were also used for an attempt to synthesize apple and banana flavors using only three of its odor components.
Takeo YAMADA Hao-Shen ZHOU Hidekazu UCHIDA Masato TOMITA Yuko UENO Keisuke ASAI Itaru HONMA Teruaki KATSUBE
Self-ordered mesoporous silicate films from organic-inorganic compound materials are successfully fabricated into the surface photo voltage (SPV) type gas sensor device as a gas adsorption insulator layer. These kinds of gas sensors device exhibit NO gas sensing property dependent on their mesoporous film structure. We are succeeded in indication about a possibility of mesoporous silicate film for the SPV type gas sensor application.
Kimihiro TAJIMA Ryuichi KOBAYASHI Nobuo KUWABARA Masamitsu TOKUDA
An electric filed sensor using Mach-Zehnder interferometers has been designed to operate more than 10 GHz. The velocity of optical wave on the waveguide is investigated to determine the electrode length, and the characteristics of frequency response are analyzed using the moment method to determine the sensor element length. The electrode length of 1 mm and the element length of 8 mm are settled by these investigations. An isotropic electric field sensor is constructed using three sensors. The minimum detectable electric field strength is 22 mV/m at frequency bandwidth of 100 Hz. This is about 100 times for the conventional electric field sensor using the similar element. The sensitivity deviation is within 3 dB when temperature changes from 0 degree to 40 degree. The deviation of directivity can be tuned within 1 dB to calibrate the sensitivity of the each element. The sensitivity degradation is within 6 dB up to 5 GHz and within 10 dB up to 10 GHz. This is almost agree with the calculated results. The sensor can measure almost the same waveform as the applied electric field pulse whose width is 6 ns and rise time is less than 2.5 ns.
Mitsuru KIHARA Katsumi HIRAMATSU Masaki SHIMA Shigeru IKEDA
We have developed a distributed optical fiber strain sensor for detecting the collapse of river embankments. The sensor uses a Brillouin optical time domain reflectometer (BOTDR) and consists of an optical fiber cable and pieces of nonwoven cloth. Pieces of cloth are fixed to the cable at 1.5-meter intervals and it is then embedded in a U-shaped configuration in a river embankment. The pieces of cloth are displaced when there is movement of the soil in which they are embedded. If one of two adjacent pieces of cloth remains stationary while the other moves, the optical fiber between the two pieces is stretched. The collapse of an embankment can be detected by using a BOTDR to monitor any such stretching in the 1.5-m lengths of fiber. The developed sensor operates at a sensitivity of 0.025%/kgf, which is equivalent to 0.067%/mm, and is thus capable of detecting soil movements of a few mm in river embankments. The sensor is also able to provide effective advance warning of the collapse of a river embankment resulting from water penetration. We subjected the sensor system to field tests that demonstrated the effectiveness of its construction and its long-term stability. The developed sensor system is an effective tool for use in river management systems of the very near future.
Hiroshige OHNO Hiroshi NARUSE Toshio KURASHIMA Atsushi NOBIKI Yasuomi UCHIYAMA Yuki KUSAKABE
We applied a Brillouin-OTDR, which is a distributed optical fiber strain sensor, to two actual concrete piles. The piles were made for use as highway foundations by on-site-pouring at construction sites and underwent load testing to ensure that their characteristics satisfied the required levels. Compressive strain caused by the load exerted on the piles was measured to an accuracy of 0.01% and a spatial resolution of 1 m. This measurement was obtained by embedding a strain-sensing optical fiber in the piles during construction. The results showed that there was good agreement between the measured strain and both the theoretical values and the values obtained with a conventional strain gauge based on electric resistance. Furthermore, the obtained strain distribution reflected the effects of friction between the pile surface and the ground. These results demonstrate the effectiveness of the Brillouin-OTDR for this kind of testing and also as a means of obtaining detailed data on the strain in concrete piles.
Ryutaro OI Takayuki HAMAMOTO Kiyoharu AIZAWA
We have studied an image acquisition system for a real-time image- based rendering (IBR) system. In this area, most conventional systems sacrifice spatial or temporal resolution for a large number of input images. However, only a portion of the image data is needed for rendering, and the portion required is determined by the position of the imaginary viewpoint. In this paper, we propose an acquisition system for a real-time image-based rendering system that uses pixel-based random-access image sensors to eliminate the main bottleneck in conventional systems. We have developed a prototype CMOS image sensor, which has 128 128 pixels. We verified the prototype chip's selective readout function. We also verified the sample & hold feature.
Nariaki YAMAMOTO Naoki KAGAWA Kentaro KITAMURA Daisuke TAKIGAWA Takekazu ISHIDA
We have designed a torque magnetometer using a 60-kG split-type superconducting magnet. A balance torque compensates the torque acting on a sample in the magnetic field. The feedback circuit for a sample direction consists of an optical position sensor, a moving coil, and a PID controller. We measured the coil current to know a sample torque. The whole torque machinery is directly rotated by a stepping motor of angular resolution 0.0036. An advantage of the torque apparatus is a wide dynamic range up to 1000 dyncm. The sample temperature can be controlled between 4 K and 300 K.
Raghuvel Subramaniam BHUVANESWARAN Jacir Luiz BORDIM Jiangtao CUI Naohiro ISHII Koji NAKANO
A Wireless Sensor Network (WSN, for short) is a distributed system consisting of n sensor nodes and a base station. In this paper, we propose an energy-efficient protocol to initialize the sensor nodes in a WSN, that is, to assign a unique ID to each sensor node. We show that if an upper bound u on the number n of sensor nodes is known beforehand, for any f 1 and any small µ (0<µ<1), a WSN without collision detection capability can be initialized in O((log (1/µ) + log f)u1+µ) time slots, with probability exceeding 1-(1/f), with no sensor node being awake for more than O(log (1/µ)+ log f) time slots.
Haruyuki MINAMITANI Yoichiro SUZUKI Atsuhiko IIJIMA Tomokazu NAGAO
A novel sensor system of denture base type was developed for simultaneous monitoring of salivary pH and tissue temperature in the oral cavity. Fundamental components of the monitoring system, sensor devices and sensor configuration are showed in this paper. The sensor units consist of IrO2 electrode and thermistor circuit implanted in the denture base that is tightly fixed in the oral cavity. The signals are transmitted by PFM-FM telemeter system that can be used for health care of the aged people without restraint of their daily behavior while at work, sleeping and even at exercise. Some of results concerning the basic characteristics of the sensor system and continuously monitored physiological data were obtained from the preliminary experiments. Availability of the whole system and monitoring method was discussed.
Tanai JOOCHIM Kosin CHAMNONGTHAI
In order to navigate a mobile robot or an autonomous vehicle in indoor environment, which includes several kinds of obstacles such as walls, furniture, and humans, the distance between the mobile robot and the obstacles have to be determined. These obstacles can be considered as walls with complicated edges. This paper proposes a mobile-robot-navigation method by using the polar coordinate transformation from an omnidirectional image. The omnidirectional image is obtained from a hyperboloidal mirror, which has the prominent feature in sensing the surrounding image at the same time. When the wall image from the camera is transformed by the transformation, the straight lines between the wall and the floor appear in the curve line after transformation. The peak point represents the distance and the direction between the robot and the wall. In addition, the wall types can be classified by the pattern and number of peak points. They are one side wall, corridor and corner. To navigate the mobile robot, in this paper, it starts with comparing a peak point obtained from the real image with the reference point determined by designed distance and direction. If there is a difference between the two points, the system will compute appropriate wheel angle to adjust the distance and direction against the wall by keeping the peak point in the same position as the reference point. The experiments are performed on the prototype mobile robot. The results show that for the determining distance from the robot to the wall between 70-290 cm, the average error is 6.23 percent. For three types of the wall classification, this method can correctly classify 86.67 percent of 15 image samples. In the robot movement alongside the wall, the system approximately consumes the 3 frame/s processing time at 10 cm/s motion speed. The mobile robot can maintain its motion alongside the wall with the average error 12 cm from reference distance.
We summarize recent studies on performance improvement in the correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering, that had been proposed previously. The correlation-based technique enables the spatial resolution of 1 cm, which is difficult for conventional sensing techniques using Brillouin scattering to achieve. Though the correlation-based technique left a problem with measurement range, we have proposed methods to overcome it with keeping high spatial resolution. In addition, we verified usefulness of the technique for smart materials by measuring strain distribution along surface of a ring structure.
Koji NISHIMURA Toru SATO Takuji NAKAMURA Masayoshi UEDA
In order to assess the possible impacts of meteors with spacecraft, which is among major hazard in the space environment, it is essential to establish an accurate statistics of their mass and velocity. We developed a radar-optical combined system for detecting faint meteors consisting of a powerful VHF Doppler radar and an ICCD video camera. The Doppler pulse compression scheme is used to enhance the S/N ratio of the radar echoes with very large Doppler shifts, as well as to determine their range with a resolution of 200 m. A very high sensitivity of more than 14 magnitude and 9 magnitude for radar and optical sensors, respectively, has been obtained. Instantaneous direction of meteor body observed by the radar is determined with the interferometry technique. We examined the optimum way of the receiving antenna arrangements, and also of the signal processing. Its absolute accuracy was confirmed by the optical observations with background stars as a reference. By combining the impinging velocity of meteor bodies derived by the radar with the absolute visual magnitude determined by the video camera simultaneously, the mass of each meteor body was estimated. The developed observation system will be used to create a valuable data base of the mass and velocity information of faint meteors, on which very little is known so far. The data base is expected to play a vital role in our understanding of the space environment needed for designing large space structures.
Toshitatsu SUZUKI Hidenori SASANUMA Masashi SANO Kenichi SHIODA Yasuo WATANABE
This study is intended to realize an in-situ gas sensor based upon the principle of millimeter/submillimeter wave spectroscopy. In-situ gas sensor will be attractive because of gas selectivity, multiple parametric measurement such as gas temperature, pressure and density, and of the in-situ measurement capability. One of the major technical problem to be solved is to develop an instrument accurate enough to discern the spectrum change due to the variation of parameters such as temperature. In this paper a proposed gas absorption measurement system is investigated, which schematically consists of Fabry-Perot type gas cell for effective long path length, and vector signal processing to reject leak signal coupled between resonator input and output ports so as to achieve precise absorption measurement. Also included is an parametric study of oxygen absorption characteristics, which is served as the predicted value in the evaluation of the instrument. The experiment at 60 GHz and 120 GHz bands using oxygen demonstrates the effectiveness of the current system configuration.
We have built an active omni-directional range range sensor that can obtain an omni-directional depth data through the use of a laser conic plane and a conic mirror. In the navigation of the mobile robot, the proposed sensor system makes a laser conic plane by rotating the laser point source at high speed which creates a two-dimensional depth map, in real time, once an image is captured. Also, since the proposed sensor system measures the actual distance of the target objects, it is able to apply the proposed sensor system to other measurement tasks.