The search functionality is under construction.

Keyword Search Result

[Keyword] waveguide(505hit)

1-20hit(505hit)

  • Optical Mode Multiplexer Using LiNbO3 Asymmetric Directional Coupler Enabling Voltage Control for Phase-Matching Condition Open Access

    Shotaro YASUMORI  Seiya MORIKAWA  Takanori SATO  Tadashi KAWAI  Akira ENOKIHARA  Shinya NAKAJIMA  Kouichi AKAHANE  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2023/11/29
      Vol:
    E107-C No:5
      Page(s):
    146-149

    An optical mode multiplexer was newly designed and fabricated using LiNbO3 waveguides. The multiplexer consists of an asymmetric directional coupler capable of achieving the phase-matching condition by the voltage adjustment. The mode conversion efficiency between TM0 and TM1 modes was quantitatively measured to be 0.86 at maximum.

  • Analysis of Optical Power Splitter with Resonator Structure Constructed by Two-Dimensional MDM Plasmonic Waveguide Open Access

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2023/12/07
      Vol:
    E107-C No:5
      Page(s):
    141-145

    An efficient optical power splitter constructed by a metal-dielectric-metal plasmonic waveguide with a resonator structure has been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator structure consists of input/output waveguides and a narrow waveguide with a T-junction. The power splitter with the resonator structure is expressed by an equivalent transmission-line circuit. We can find that the transmittance and reflectance calculated by the FD-TD method and the equivalent circuit are matched when the difference in width between the input/output waveguides and the narrow waveguide is small. It is also shown that the transmission wavelength can be adjusted by changing the narrow waveguide lengths that satisfy the impedance matching condition in the equivalent circuit.

  • Uniaxially Symmetrical T-Junction OMT with 45° -Tilted Branch Waveguide Ports

    Hidenori YUKAWA  Yu USHIJIMA  Toru TAKAHASHI  Toru FUKASAWA  Yoshio INASAWA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    57-65

    A T-junction orthomode transducer (OMT) is a waveguide component that separates two orthogonal linear polarizations in the same frequency band. It has a common circular waveguide short-circuited at one end and two branch rectangular waveguides arranged in opposite directions near the short circuit. One of the advantages of a T-junction OMT is its short axial length. However, the two rectangular ports, which need to be orthogonal, have different levels of performance because of asymmetry. We therefore propose a uniaxially symmetrical T-junction OMT, which is configured such that the two branch waveguides are tilted 45° to the short circuit. The uniaxially symmetrical configuration enables same levels of performance for the two ports, and its impedance matching is easier compared to that for the conventional configuration. The polarization separation principle can be explained using the principles of orthomode junction (OMJ) and turnstile OMT. Based on calculations, the proposed configuration demonstrated a return loss of 25dB, XPD of 30dB, isolation of 21dB between the two branch ports, and loss of 0.25dB, with a bandwidth of 15% in the K band. The OMT was then fabricated as a single piece via 3D printing and evaluated against the calculated performance indices.

  • A Line Length Independent, Pseudo-Transmission Permittivity Sensor Basing on Dielectric Waveguides

    Christoph BAER  

     
    PAPER

      Pubricized:
    2023/05/10
      Vol:
    E106-C No:11
      Page(s):
    689-697

    This contribution introduces a novel, dielectric waveguide based, permittivity sensor. Next to the fundamental hybrid mode theory, which predicts exceptional wave propagation behavior, a design concept is presented that realizes a pseudo-transmission measurement approach for attenuating feed-side reflections. Furthermore, a transmission line length independent signal processing is introduced, which fosters the robustness and applicability of the sensor concept. Simulation and measurement results that prove the sensor concept and validate the high measurement accuracy, are presented and discussed in detail.

  • 300-GHz-Band Diplexer for Frequency-Division Multiplexed Wireless Communication

    Yuma KAWAMOTO  Toki YOSHIOKA  Norihiko SHIBATA  Daniel HEADLAND  Masayuki FUJITA  Ryo KOMA  Ryo IGARASHI  Kazutaka HARA  Jun-ichi KANI  Tadao NAGATSUMA  

     
    BRIEF PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:11
      Page(s):
    722-726

    We propose a novel silicon diplexer integrated with filters for frequency-division multiplexing in the 300-GHz band. The diplexer consists of a directional coupler formed of unclad silicon wires, a photonic bandgap-based low-pass filter, and a high-pass filter based on frequency-dependent bending loss. These integrated filters are capable of suppressing crosstalk and providing >15dB isolation over 40GHz, which is highly beneficial for terahertz-range wireless communications applications. We have used this diplexer in a simultaneous error-free wireless transmission of 300-GHz and 335-GHz channels at the aggregate data rate of 36Gbit/s.

  • Analysis of Optical Resonator Constructed by Two-Dimensional MDM Plasmonic Waveguide

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2022/09/08
      Vol:
    E106-C No:3
      Page(s):
    103-106

    An efficient bent waveguide and an optical power splitter with a resonator constructed by a metal-dielectric-metal plasmonic waveguide have been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator can be realized by utilizing impedance mismatch at the connection between a narrow waveguide and an input/output waveguide. Numerical results for the bent waveguide show that transmission bands can be controlled by adjusting the length of the narrow waveguide. We have also shown that the optical power of the power splitter is entirely distributed into the output waveguide at the resonant wavelength and its distribution ratio can be controlled.

  • Bending Loss Analysis of Chalcogenide Glass Channel Waveguides for Mid-Infrared Astrophotonic Devices Open Access

    Takashi YASUI  Jun-ichiro SUGISAKA  Koichi HIRAYAMA  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2022/08/25
      Vol:
    E106-C No:3
      Page(s):
    107-110

    In this study, the bending losses of chalcogenide glass channel optical waveguides consisting of an As2Se3 core and an As2S3 lower cladding layer were numerically evaluated across the astronomical N-band, which is the mid-infrared spectral range between the 8 µm and 12 µm wavelengths. The results reveal the design rules for bent waveguides in mid-infrared astrophotonic devices.

  • Design and Fabrication of PTFE Substrate-Integrated Waveguide Butler Matrix for Short Millimeter Waves Open Access

    Mitsuyoshi KISHIHARA  Kaito FUJITANI  Akinobu YAMAGUCHI  Yuichi UTSUMI  Isao OHTA  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    111-115

    We attempt to design and fabricate of a 4×4 Butler matrix for short-millimeter-wave frequencies by using the microfabrication process for a polytetrafluoroethylene (PTFE) substrate-integrated waveguide (SIW) by the synchrotron radiation (SR) direct etching of PTFE and the addition of a metal film by sputter deposition. First, the dimensions of the PTFE SIW using rectangular through-holes for G-band (140-220 GHz) operation are determined, and a cruciform 90 ° hybrid coupler and an intersection circuit are connected by the PTFE SIW to design the Butler matrix. Then, a trial fabrication is performed. Finally, the validity of the design result and the fabrication process is verified by measuring the radiation pattern.

  • Design, Fabrication, and Evaluation of Waveguide Structure Using Si/CaF2 Heterostructure for Near- and Mid- Infrared Silicon Photonics

    Long LIU  Gensai TEI  Masahiro WATANABE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/07/08
      Vol:
    E106-C No:1
      Page(s):
    1-6

    We have proposed integrated waveguide structure suitable for mid- and near- infrared light propagation using Si and CaF2 heterostructures on Si substrate. Using a fabrication process based on etching, lithography and crystal growth techniques, we have formed a slab-waveguide structure with a current injection mechanism on a SOI substrate, which would be a key component for Si/CaF2 quantum cascade lasers and other optical integrated systems. The propagation of light at a wavelength of 1.55 µm through a Si/CaF2 waveguide structure have been demonstrated for the first time using a structure with a Si/CaF2 multilayered core with 610-nm-thick, waveguide width of 970 nm, which satisfies single-mode condition in the horizontal direction within a tolerance of fabrication accuracy. The waveguide loss for transverse magnetic (TM) mode has been evaluated to be 51.4 cm-1. The cause of the loss was discussed by estimating the edge roughness scattering and free carrier absorption, which suggests further reduction of the loss would be possible.

  • Design for Operation in Two Frequency Bands by Division of the Coupled Region in a Waveguide 2-Plane Coupler

    Shihao CHEN  Takashi TOMURA  Jiro HIROKAWA  Kota ITO  Mizuki SUGA  Yushi SHIRATO  Daisei UCHIDA  Naoki KITA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/05/23
      Vol:
    E105-C No:12
      Page(s):
    729-739

    A waveguide 2-plane hybrid coupler with two operating bands is proposed. The cross-sectional shape of the coupled region inside the proposed coupler is designed with a two-dimensional arbitrary geometry sorting method. Simulations of the proposed hybrid coupler has a fractional bandwidth (FBW) of 2.17% at the center of 24.99GHz, and at the center of 28.28GHz an FBW of 6.13%. The proposed coupler is analyzed by the mode-matching finite-element hybrid method, and the final result is obtained using a genetic algorithm. The analyzed result of the coupling for the main modes in the coupled region is presented. The design result is confirmed by measurements.

  • Optimal Design of Optical Waveguide Devices Utilizing Beam Propagation Method with ADI Scheme Open Access

    Akito IGUCHI  Yasuhide TSUJI  

     
    INVITED PAPER

      Pubricized:
    2022/05/20
      Vol:
    E105-C No:11
      Page(s):
    644-651

    This paper shows structural optimal design of optical waveguide components utilizing an efficient 3D frequency-domain and 2D time-domain beam propagation method (BPM) with an alternating direction implicit (ADI) scheme. Usual optimal design procedure is based on iteration of numerical simulation, and total computational cost of the optimal design mainly depends on the efficiency of numerical analysis method. Since the system matrices are tridiagonal in the ADI-based BPM, efficient analysis and optimal design are available. Shape and topology optimal design shown in this paper is based on optimization of density distribution and sensitivity analysis to the density parameters. Computational methods of the sensitivity are shown in the case of using the 3D semi-vectorial and 2D time-domain BPM based on ADI scheme. The validity of this design approach is shown by design of optical waveguide components: mode converters, and a polarization beam splitter.

  • Control of Radiation Direction in an Aperture Array Excited by a Waveguide 2-Plane Hybrid Coupler

    Yuki SUNAGUCHI  Takashi TOMURA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/02/10
      Vol:
    E105-B No:8
      Page(s):
    906-912

    This paper details the design of a plate that controls the beam direction in an aperture array excited by a waveguide 2-plane hybrid coupler. The beam direction can be controlled in the range of ±15-32deg. in the quasi H-plane, and ±26-54deg. in the quasi E-plane at the design frequency of 66.425GHz. Inductive irises are introduced into tapered waveguides in the plate and the reflection is suppressed by narrow apertures. A plate that has a larger tilt angle in the quasi E-plane and another plate with conventional rectangular waveguide ports as a reference are fabricated and measured. The measured values agree well with the simulation results.

  • A Multi-Layer SIW Resonator Loaded with Asymmetric E-Shaped Slot-Lines for a Miniaturized Tri-Band BPF with Low Radiation Loss

    Weiyu ZHOU  Satoshi ONO  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/12/27
      Vol:
    E105-C No:7
      Page(s):
    349-357

    This paper proposes a novel multi-layer substrate integrated waveguide (SIW) resonator loaded with asymmetric E-shaped slot-lines and shows a tri-band band-pass filter (BPF) using the proposed structure. In the previous literature, various SIW resonators have been proposed to simultaneously solve the problems of large area and high insertion loss. Although these SIWs have a lower insertion loss than planar-type resonators using a printed circuit board, the size of these structures tends to be larger. A multi-layer SIW resonator loaded with asymmetric E-shaped slot-lines can solve the above problems and realize a tri-band BPF without increasing the size to realize further miniaturization. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured for showing the validity of the design method in this paper.

  • Channel Arrangement Design in Lumped Amplified WDM Transmission over NZ-DSF Link with Nonlinearity Mitigation Using Optical Phase Conjugation Open Access

    Shimpei SHIMIZU  Takayuki KOBAYASHI  Takeshi UMEKI  Takushi KAZAMA  Koji ENBUTSU  Ryoichi KASAHARA  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/01/17
      Vol:
    E105-B No:7
      Page(s):
    805-813

    Optical phase conjugation (OPC) is an all-optical signal processing technique for mitigating fiber nonlinearity and is promising for building cost-efficient fiber networks with few optic-electric-optic conversions and long amplification spacing. In lumped amplified systems, OPC has a little nonlinearity mitigation efficiency for nonlinear distortion induced by cross-phase modulation (XPM) due to the asymmetry of power and chromatic dispersion (CD) maps during propagation in transmission fiber. In addition, the walk-off of XPM-induced noise becomes small due to the CD compensation effect of OPC, so the deterministic nonlinear distortion increases. Therefore, lumped amplified transmission systems with OPC are more sensitive to channel spacing than conventional systems. In this paper, we show the channel spacing dependence of NZ-DSF transmission using amplification repeater with OPC. Numerical simulations show comprehensive characteristics between channel spacing and CD in a 100-Gbps/λ WDM signal. An experimental verification using periodically poled LiNbO3-based OPC is also performed. These results suggest that channel spacing design is more important in OPC-assisted systems than in conventional dispersion-unmanaged systems.

  • Millimeter Wave SIW Cavity-Fed Filtenna Arrays for 5G Wireless Applications Open Access

    Rong LU  Chao YU  Wei HONG  

     
    INVITED PAPER

      Pubricized:
    2021/12/03
      Vol:
    E105-B No:6
      Page(s):
    707-714

    In this paper, millimeter wave (mmWave) filtenna arrays for 5G applications are proposed. Two kinds of 2-element subarrays are designed for horizontal and vertical polarizations. Each subarray consists of three substrate integrated waveguide (SIW) cavities and two sets of stacked patches. Fully-shielded combined eighth-mode SIW (FSD-CEMSIW) cavities are used in the filtenna design. This cavity not only works as the first-stage resonator but also as the power divider for the subarray. As a result, a four-order bandpass filtering response is achieved. Filtenna arrays were fabricated and measured for demonstration. The impedance bandwidths of these subarrays cover 24-30GHz, including the 5G mmWave bands (n257, n258, and n261) with measured average gains of 8.2dBi and more than 22dB out-of-band suppression. The proposed antennas can be good candidates for 5G mmWave communication to reduce the system complexity and potential cost of the mmWave front-ends.

  • Volume Integral Equations Combined with Orthogonality of Modes for Analysis of Two-Dimensional Optical Slab Waveguide

    Masahiro TANAKA  

     
    PAPER

      Pubricized:
    2021/10/18
      Vol:
    E105-C No:4
      Page(s):
    137-145

    Volume integral equations combined with orthogonality of guided mode and non-guided field are proposed for the TE incidence of two-dimensional optical slab waveguide. The slab waveguide is assumed to satisfy the single mode condition. The formulation of the integral equations are described in detail. The matrix equation obtained by applying the method of moments to the integral equations is shown. Numerical results for step, gap, and grating waveguides are given. They are compared to published papers to validate the proposed method.

  • Calibration of a Coaxial-Loaded Stepped Cut-Off Circular Waveguide and Related Application of Dielectric Measurement for Liquids Open Access

    Kouji SHIBATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/10/21
      Vol:
    E105-C No:4
      Page(s):
    163-171

    A novel jig structure for S11 calibration with short/open conditions and one reference material (referred to here as SOM) in dielectric measurement of liquids using a coaxial feed type stepped cut-off circular waveguide and a formula for exact calculation of S11 for the analytical model of the structure using the method of moments (MoM) was proposed. The accuracy and validity of S11 values calculated using the relevant formula was then verified for frequencies of 0.50, 1.5 and 3.0 GHz, and S11 measurement accuracy with each termination condition was verified after calibration with SOM by combining the jig of the proposed structure with the study's electromagnetic (EM) analysis method. The relative complex permittivity was then estimated from S11 values measured with various liquids in the jig after calibration, and differences in results obtained with the proposed method and the conventional jig, the analytical model and the EM analysis method were examined. The validity of the proposed dielectric measurement method based on a combination of the above jig structure, numerical S11 calculation and the calibration method was thus confirmed.

  • Design and Fabrication of PTFE Substrate Integrated Waveguide Coupler by SR Direct Etching Open Access

    Mitsuyoshi KISHIHARA  Masaya TAKEUCHI  Akinobu YAMAGUCHI  Yuichi UTSUMI  Isao OHTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/03/15
      Vol:
    E104-C No:9
      Page(s):
    446-454

    The microfabrication technique based on synchrotron radiation (SR) direct etching process has recently been applied to construct PTFE microstructures. This paper proposes a PTFE substrate integrated waveguide (PTFE SIW). It is expected that the PTFE SIW contributes to the improvement of the structural strength. A rectangular through-hole is introduced taking the advantage of the SR direct etching process. First, a PTFE SIW for the Q-band is designed. Then, a cruciform 3-dB directional coupler consisting of the PTFE SIW is designed and fabricated by the SR direct etching process. The validity of the PTFE SIW coupler is confirmed by measuring the frequency characteristics of the S-parameters. The mechanical strength of the PTFE SIW and the peeling strength of its Au film are also additionally investigated.

  • Single-Mode Condition of Chalcogenide Glass Channel Waveguides for Integrated Optical Devices Operated across the Astronomical N-Band

    Takashi YASUI  Jun-ichiro SUGISAKA  Koichi HIRAYAMA  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2021/01/13
      Vol:
    E104-C No:8
      Page(s):
    386-389

    In this study, we conduct guided mode analyses for chalcogenide glass channel waveguides using As2Se3 core and As2S3 lower cladding to determine their single-mode conditions across the astronomical N-band (8-12µm). The results reveal that a single-mode operation over the band can be achieved by choosing a suitable core-thickness.

  • Spatial Single Dimensional Mode Based De-Multiplexer Using Slab Waveguide

    Haisong JIANG  Mahmoud NASEF  Kiichi HAMAMOTO  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2020/10/19
      Vol:
    E104-C No:5
      Page(s):
    164-167

    This paper reports a single dimensional mode based multiplexer / de-multiplexer using the slab waveguide to realize high modes multiplexing and high integration in the non-MIMO (multi-in multi-out) multimode transmission system. A sufficient mode crosstalk of -20 dB was obtained by selecting suitable parameters of the spacing between the connecting positions of each arrayed waveguide Di, the radius slab waveguide R0 and lateral V-parameter.

1-20hit(505hit)