The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

13181-13200hit(42807hit)

  • Robust and Accurate Ultrasound 3-D Imaging Algorithm Incorporating Adaptive Smoothing Techniques

    Kenshi SAHO  Tomoki KIMURA  Shouhei KIDERA  Hirofumi TAKI  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E95-B No:2
      Page(s):
    572-580

    Many researchers have proposed ultrasound imaging techniques for product inspection; however, most of these techniques are aimed at detecting the existence of flaws in products. The acquisition of an accurate three-dimensional image using ultrasound has the potential to be a useful product inspection tool. In this paper we apply the Envelope algorithm, which was originally proposed for accurate UWB (Ultra Wide-Band) radar imaging systems, to ultrasound imaging. We show that the Envelope algorithm results in image deterioration, because it is difficult for ultrasound measurements to achieve high signal to noise (S/N) ratio values as a result of a high level of noise and interference from the environment. To reduce errors, we propose two adaptive smoothing techniques that effectively stabilize the estimated image produced by the Envelope algorithm. An experimental study verifies that the proposed imaging algorithm has accurate 3-D imaging capability with a mean error of 6.1 µm, where the transmit center frequency is 2.0 MHz and the S/N ratio is 23 dB. These results demonstrate the robustness of the proposed imaging algorithm compared with a conventional Envelope algorithm.

  • Configuration Context Reduction for Coarse-Grained Reconfigurable Architecture

    Shouyi YIN  Chongyong YIN  Leibo LIU  Min ZHU  Shaojun WEI  

     
    PAPER-Design Methodology

      Vol:
    E95-D No:2
      Page(s):
    335-344

    Coarse-grained reconfigurable architecture (CGRA) combines the performance of application-specific integrated circuits (ASICs) and the flexibility of general-purpose processors (GPPs), which is a promising solution for embedded systems. With the increasing complexity of reconfigurable resources (processing elements, routing cells, I/O blocks, etc.), the reconfiguration cost is becoming the performance bottleneck. The major reconfiguration cost comes from the frequent memory-read/write operations for transferring the configuration context from main memory to context buffer. To improve the overall performance, it is critical to reduce the amount of configuration context. In this paper, we propose a configuration context reduction method for CGRA. The proposed method exploits the structure correlation of computation tasks that are mapped onto CGRA and reduce the redundancies in configuration context. Experimental results show that the proposed method can averagely reduce the configuration context size up to 71% and speed up the execution up to 68%. The proposed method does not depend on any architectural feature and can be applied to CGRA with an arbitrary architecture.

  • A Routing Protocol for Considering the Time Variant Mobility Model in Delay Tolerant Network

    Yong-Pyo KIM  Keisuke NAKANO  Kazuyuki MIYAKITA  Masakazu SENGOKU  Yong-Jin PARK  

     
    PAPER

      Vol:
    E95-D No:2
      Page(s):
    451-461

    Delay Tolerant Network (DTN) has been emerged to support the network connectivity of the disruptive networks. A variety of routing methods have been proposed to reduce the latency for message delivery. PROPHET was proposed as a probabilistic routing that utilizes history of encounters and transitivity of nodes, which is computed as contact probability. While PROPHET improves the performance of DTN due to contact probability, contact probability is just one parameter reflecting the mobility pattern of nodes, and further study on utilizing contacting information of mobility pattern is still an important problem. Hence, in this paper, we try to improve routing for DTN by using a novel metric other than contact probability as mobility information. We propose the routing protocol to use mean residual contact time that describes the contact period for a given pair of nodes. The simulation results show that using the mean residual contact time can improve the performance of routing protocols for DTN. In addition, we also show in what situations the proposed method provides more efficient data delivery service. We characterize these situations using a parameter called Variation Metric.

  • Low-Complexity Memory Access Architectures for Quasi-Cyclic LDPC Decoders

    Ming-Der SHIEH  Shih-Hao FANG  Shing-Chung TANG  Der-Wei YANG  

     
    PAPER-Computer System

      Vol:
    E95-D No:2
      Page(s):
    549-557

    Partially parallel decoding architectures are widely used in the design of low-density parity-check (LDPC) decoders, especially for quasi-cyclic (QC) LDPC codes. To comply with the code structure of parity-check matrices of QC-LDPC codes, many small memory blocks are conventionally employed in this architecture. The total memory area usually dominates the area requirement of LDPC decoders. This paper proposes a low-complexity memory access architecture that merges small memory blocks into memory groups to relax the effect of peripherals in small memory blocks. A simple but efficient algorithm is also presented to handle the additional delay elements introduced in the memory merging method. Experiment results on a rate-1/2 parity-check matrix defined in the IEEE 802.16e standard show that the LDPC decoder designed using the proposed memory access architecture has the lowest area complexity among related studies. Compared to a design with the same specifications, the decoder implemented using the proposed architecture requires 33% fewer gates and is more power-efficient. The proposed new memory access architecture is thus suitable for the design of low-complexity LDPC decoders.

  • Low Latency MAC Protocol in Wireless Sensor Networks Using Timing Offset

    Seung Sik CHOI  

     
    LETTER-Network

      Vol:
    E95-B No:2
      Page(s):
    615-618

    This paper proposes a low latency MAC protocol that can be used in sensor networks. To extend the lifetime of sensor nodes, the conventional solution is to synchronize active/sleep periods of all sensor nodes. However, due to these synchronized sensor nodes, packets in the intermediate nodes must wait until the next node wakes up before it can forward a packet. This induces a large delay in sensor nodes. To solve this latency problem, a clustered sensor network which uses two types of sensor nodes and layered architecture is considered. Clustered heads in each cluster are synchronized with different timing offsets to reduce the sleep delay. Using this concept, the latency problem can be solved and more efficient power usage can be obtained.

  • Color Filter Based on Surface Plasmon Resonance Utilizing Sub-Micron Periodic Hole Array in Aluminum Thin Film

    Naoki IKEDA  Yoshimasa SUGIMOTO  Masayuki OCHIAI  Daijyu TSUYA  Yasuo KOIDE  Daisuke INOUE  Atsushi MIURA  Tsuyoshi NOMURA  Hisayoshi FUJIKAWA  Kazuo SATO  

     
    BRIEF PAPER

      Vol:
    E95-C No:2
      Page(s):
    251-254

    We investigated optical transmission characteristics of aluminum thin films with periodic hole arrays in sub-wavelength. We divided white light into several color spectra using a color filter based on the surface plasmon resonance (SPR) utilizing aluminum showing high plasma frequency. By optimizing a hole-array period, hole shape, polarization and index difference of two surface, transmittance of 30% and full-width at half-maximum of around 100 nm were achieved.

  • Low Pass Filter-Less Pulse Width Controlled PLL Using Time to Soft Thermometer Code Converter Open Access

    Toru NAKURA  Kunihiro ASADA  

     
    PAPER-Integrated Electronics

      Vol:
    E95-C No:2
      Page(s):
    297-302

    This paper demonstrates a pulse width controlled PLL without using an LPF. A pulse width controlled oscillator accepts the PFD output where its pulse width controls the oscillation frequency. In the pulse width controlled oscillator, the input pulse width is converted into soft thermometer code through a time to soft thermometer code converter and the code controls the ring oscillator frequency. By using this scheme, our PLL realizes LPF-less as well as quantization noise free operation. The prototype chip achieves 60 µm 20 µm layout area using 65 nm CMOS technology along with 1.73 ps rms jitter while consuming 2.81 mW under a 1.2 V supply with 3.125 GHz output frequency.

  • Modeling and Analysis of Substrate Noise Coupling in Analog and RF ICs

    Makoto NAGATA  

     
    INVITED PAPER

      Vol:
    E95-A No:2
      Page(s):
    430-438

    Substrate noise coupling has been seriously concerned in the design of advanced analog and radio frequency (RF) integrated circuits (ICs). This paper reviews recent advancements in the modeling, analysis, and evaluation of substrate noise coupling at IC chip level. Noise generation from digital circuits and propagation to the area of analog circuits are clearly visualized both by full-chip simulation as well as by on-chip measurements, for silicon test vehicles. The impacts of substrate noise coupling are also in-depth discussed at device, circuit, as well as system levels. Overall understanding of substrate noise coupling will then provide the basics for highly reliable design of analog and RF ICs.

  • A New Analytical Model for the CQ Switch Performance Analysis under the Bursty Traffic

    Milutin RADONJIC  Igor RADUSINOVIC  Anita SIMURINA  Dusan BANOVIC  

     
    LETTER-Network System

      Vol:
    E95-B No:2
      Page(s):
    595-598

    In this letter we propose a new analytical iterative method for calculating the throughput and average cell latency of the crosspoint queued switch with random scheduling algorithm under the bursty traffic model. This method is verified by comparing it with simulation results, which shows a very good match. To the authors' knowledge, this is the first analytical method for performance analysis of such a switch under the bursty traffic model.

  • Photonic Crystal Nanolaser Biosensors Open Access

    Shota KITA  Shota OTSUKA  Shoji HACHUDA  Tatsuro ENDO  Yasunori IMAI  Yoshiaki NISHIJIMA  Hiroaki MISAWA  Toshihiko BABA  

     
    INVITED PAPER

      Vol:
    E95-C No:2
      Page(s):
    188-198

    High-performance and low-cost sensors are critical devices for high-throughput analyses of bio-samples in medical diagnoses and life sciences. In this paper, we demonstrate photonic crystal nanolaser sensor, which detects the adsorption of biomolecules from the lasing wavelength shift. It is a promising device, which balances a high sensitivity, high resolution, small size, easy integration, simple setup and low cost. In particular with a nanoslot structure, it achieves a super-sensitivity in protein sensing whose detection limit is three orders of magnitude lower than that of standard surface-plasmon-resonance sensors. Our investigations indicate that the nanoslot acts as a protein condenser powered by the optical gradient force, which arises from the strong localization of laser mode in the nanoslot.

  • Efficient Topological Calibration and Object Tracking with Distributed Pan-Tilt Cameras

    Norimichi UKITA  Kunihito TERASHITA  Masatsugu KIDODE  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:2
      Page(s):
    626-635

    We propose a method for calibrating the topology of distributed pan-tilt cameras (i.e. the structure of routes among and within FOVs) and its probabilistic model. To observe as many objects as possible for as long as possible, pan-tilt control is an important issue in automatic calibration as well as in tracking. In a calibration period, each camera should be controlled towards an object that goes through an unreliable route whose topology is not calibrated yet. This camera control allows us to efficiently establish the topology model. After the topology model is established, the camera should be directed towards the route with the biggest possibility of object observation. We propose a camera control framework based on the mixture of the reliability of the estimated routes and the probability of object observation. This framework is applicable both to camera calibration and object tracking by adjusting weight variables. Experiments demonstrate the efficiency of our camera control scheme for establishing the camera topology model and tracking objects as long as possible.

  • A CMOS Class-G Supply Modulation for Polar Power Amplifiers with High Average Efficiency and Low Ripple Noise

    Qing LIU  Jiangtao SUN  YongJu SUH  Nobuyuki ITOH  Toshihiko YOSHIMASU  

     
    PAPER

      Vol:
    E95-A No:2
      Page(s):
    487-497

    In this paper, a CMOS Class-G supply modulation for polar power amplifiers with high average efficiency and low ripple noise is proposed. In the proposed Class-G supply modulation, the parallel supply modulations which are controlled by switch signals are utilized for low power and high power supplies to increase the average efficiency. A low dropout (LDO) is utilized to suppress the delta-modulated noise and provide a low ripple noise power supply. The proposed supply modulation has high efficiency at large output current as the conventional supply modulation, and it also has high efficiency and low ripple noise at the low output current. To verify the effectiveness of the proposed supply modulation, the proposed supply modulation was designed with 0.13 µm CMOS process. The simulation results show that the proposed supply modulation achieves a maximum efficiency of 85.1%. It achieves an average efficiency of 29.3% and a 7.1% improvement compared with the conventional supply modulations with Class-E power amplifier. The proposed supply modulation also shows an excellent spurious free dynamic range (SFDR) of -73 dBc for output envelope signal.

  • Robust Gait-Based Person Identification against Walking Speed Variations

    Muhammad Rasyid AQMAR  Koichi SHINODA  Sadaoki FURUI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:2
      Page(s):
    668-676

    Variations in walking speed have a strong impact on gait-based person identification. We propose a method that is robust against walking-speed variations. It is based on a combination of cubic higher-order local auto-correlation (CHLAC), gait silhouette-based principal component analysis (GSP), and a statistical framework using hidden Markov models (HMMs). The CHLAC features capture the within-phase spatio-temporal characteristics of each individual, the GSP features retain more shape/phase information for better gait sequence alignment, and the HMMs classify the ID of each gait even when walking speed changes nonlinearly. We compared the performance of our method with other conventional methods using five different databases, SOTON, USF-NIST, CMU-MoBo, TokyoTech A and TokyoTech B. The proposed method was equal to or better than the others when the speed did not change greatly, and it was significantly better when the speed varied across and within a gait sequence.

  • Detecting Partial and Near Duplication in the Blogosphere

    Yeo-Chan YOON  Myung-Gil JANG  Hyun-Ki KIM  So-Young PARK  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E95-D No:2
      Page(s):
    681-685

    In this paper, we propose a duplicate document detection model recognizing both partial duplicates and near duplicates. The proposed model can detect partial duplicates as well as exact duplicates by splitting a large document into many small sentence fingerprints. Furthermore, the proposed model can detect even near duplicates, the result of trivial revisions, by filtering the common words and reordering the word sequence.

  • Skew-Tolerant Key Distribution for Load Balancing in MapReduce

    Jihoon SON  Hyunsik CHOI  Yon Dohn CHUNG  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E95-D No:2
      Page(s):
    677-680

    MapReduce is a parallel processing framework for large scale data. In the reduce phase, MapReduce employs the hash scheme in order to distribute data sharing the same key across cluster nodes. However, this approach is not robust for the skewed data distribution. In this paper, we propose a skew-tolerant key distribution method for MapReduce. The proposed method assigns keys to cluster nodes balancing their workloads. We implemented our proposed method on Hadoop. Through experiments, we evaluate the performance of the proposed method in comparison with the conventional method.

  • On Demand Content Anycasting to Enhance Content Server Using P2P Network

    Othman M. M. OTHMAN  Koji OKAMURA  

     
    PAPER

      Vol:
    E95-D No:2
      Page(s):
    514-522

    In this paper, we suggest a new technology called Content Anycasting, and we show our design and evaluation of it. Content Anycasting shows how to utilize the capabilities of one of the candidate future Internet technologies that is the Flow-based network as in OpenFlow to giving new opportunities to the future internet that are currently not available. Content Anycasting aims to provide more flexible and dynamic redirection of contents. This would be very useful in extending the content server's capacity by enabling it to serve more clients, and in improving the response of the P2P networks by reducing the time of joining P2P networks. This method relies on three important ideas which are; the content based networking, decision making by the network in a similar manner to anycast, and the participation of user clients in providing the service. This is done through the use of the flow-based actions in flow-based network and having some modifications to the content server and client.

  • Life-Log Observation of Walking Traces with Sensors of Android Mobile Device and Vector Map Matching

    Hikaru OOKURA  Hiroshi YAMAMOTO  Katsuyuki YAMAZAKI  

     
    LETTER

      Vol:
    E95-D No:2
      Page(s):
    546-548

    In this paper, we have proposed a new method of observing walking traces, which can observe people's indoor movement for life-logging. Particularly emphasized new techniques in this paper are methods to detect locations, where walking directions are changed, by analyzing azimuth orientations measured by an orientation sensor of an Android mobile device, and to decide walking traces by a map matching with a vector map. The experimental evaluation has shown that the proposed method can determine the correct paths of walking traces.

  • A Fast Multi-Object Extraction Algorithm Based on Cell-Based Connected Components Labeling

    Qingyi GU  Takeshi TAKAKI  Idaku ISHII  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:2
      Page(s):
    636-645

    We describe a cell-based connected component labeling algorithm to calculate the 0th and 1st moment features as the attributes for labeled regions. These can be used to indicate their sizes and positions for multi-object extraction. Based on the additivity in moment features, the cell-based labeling algorithm can label divided cells of a certain size in an image by scanning the image only once to obtain the moment features of the labeled regions with remarkably reduced computational complexity and memory consumption for labeling. Our algorithm is a simple-one-time-scan cell-based labeling algorithm, which is suitable for hardware and parallel implementation. We also compared it with conventional labeling algorithms. The experimental results showed that our algorithm is faster than conventional raster-scan labeling algorithms.

  • Analysis and Improvement of a Secret Broadcast with Binding Encryption in Broadcasting Networks

    Mingwu ZHANG  Fagen LI  Tsuyoshi TAKAGI  

     
    LETTER-Information Network

      Vol:
    E95-D No:2
      Page(s):
    686-689

    A secret broadcasting scheme deals with secure transmission of a message so that more than one privileged receiver can decrypt it. Jeong et al. proposed an efficient secret broadcast scheme using binding encryption to obtain the security properties of IND-CPA semantic security and decryption consistency. Thereafter, Wu et al. showed that the Jeong et al.'s scheme just achieves consistency in relatively weak condition and is also inefficient, and they constructed a more efficient scheme to improve the security. In this letter, we demonstrate that the Wu et al.'s scheme is also a weak decryption consistency and cannot achieve the decryption consistency if an adversary has the ability to tamper with the ciphertext. We also present an improved and more efficient secret broadcast scheme to remedy the weakness. The proposed scheme achieves decryption consistency and IND-CCA security, which can protect against stronger adversary's attacks and allows us to broadcast a digital message securely.

  • Efficient Consistency Achievement of Federated Identity and Access Management Based on a Novel Self-Adaptable Approach

    Shi-Cho CHA  Hsiang-Meng CHANG  

     
    PAPER-Information Network

      Vol:
    E95-D No:2
      Page(s):
    577-587

    Federated identity and access management (FIAM) systems enable a user to access services provided by various organizations seamlessly. In FIAM systems, service providers normally stipulate that their users show assertions issued by allied parties to use their services as well as determine user privileges based on attributes in the assertions. However, the integrity of the attributes is important under certain circumstances. In such a circumstance, all released assertions should reflect modifications made to user attributes. Despite the ability to adopt conventional certification revocation technologies, including CRL or OCSP, to revoke an assertion and request the corresponding user to obtain a new assertion, re-issuing an entirely new assertion if only one attribute, such as user location or other environmental information, is changed would be inefficient. Therefore, this work presents a self-adaptive framework to achieve consistency in federated identity and access management systems (SAFIAM). In SAFIAM, an identity provider (IdP), which authenticates users and provides user attributes, should monitor access probabilities according to user attributes. The IdP can then adopt the most efficient means of ensuring data integrity of attributes based on related access probabilities. While Internet-based services emerge daily that have various access probabilities with respect to their user attributes, the proposed self-adaptive framework significantly contributes to efforts to streamline the use of FIAM systems.

13181-13200hit(42807hit)