The search functionality is under construction.

Keyword Search Result

[Keyword] 5G(137hit)

41-60hit(137hit)

  • Specificity Analysis for Nonlinear Distorted Radiation Using 4.65GHz Band Massive Element Active Antenna System for 5G and Influence on Spatial Multiplexing Performance Open Access

    Takuji MOCHIZUKI  

     
    INVITED PAPER

      Pubricized:
    2021/04/08
      Vol:
    E104-C No:10
      Page(s):
    543-551

    This paper reports the evaluation and simulated results of the nonlinear characteristics of the 4.65GHz Active Antenna System (AAS) for 5G mobile communication systems. The antenna element is composed of ±45° dual polarization shared patch antenna, and is equipped with total 64 elements with horizontal 8 × vertical 4 × 2 polarization configuration. A 32-element transceiver circuit was mounted on the back side of the antenna printed circuit board. With the above circuit configuration, a full digital beamforming method has been adopted that can realize high frequency utilization efficiency by using the Sub6GHz-band massive element AAS, and excellent spatial multiplexing performance by Massive MIMO has been pursued. However, it was found that the Downlink (DL) SINR (Signal to Interference and Noise Ratio) to each terminal deteriorated because of the nonlinear distorted radiation as the transmission output power was increased in the maximum rated direction. Therefore, it has been confirmed that the spatial multiplexing performance in the high output power region is significantly improved by installing DPD. In order to clarify the affection of nonlinear distorted radiation on spatial multiplexing performance, the radiation patterns were measured using OFDM signal (subcarrier spacing 60kHz × 1500 subcarriers in 90MHz bandwidth) in an anechoic chamber. And by the simulated analysis for the affection of nonlinear distortion on null characteristic, the accuracy of nulls generated in each user terminal direction does not depend on the degree of nonlinearity, but is affected by the residual amplitude and phase variation among all transmitters and receivers after calibration (CAL). Therefore, it was clarified that the double compensation configuration of DPD and high-precision CAL is effective for achieving excellent Massive MIMO performance. This paper is based on the IEICE Japanese Transactions on Communications (Vol.J102-B, No.11, pp.816-824, Nov. 2019).

  • Highly Efficient Sensing Methods of Primary Radio Transmission Systems toward Dynamic Spectrum Sharing-Based 5G Systems Open Access

    Atomu SAKAI  Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1227-1236

    The Dynamic Spectrum Sharing (DSS) system, which uses the frequency band allocated to incumbent systems (i.e., primary users) has attracted attention to expand the available bandwidth of the fifth-generation mobile communication (5G) systems in the sub-6GHz band. In Japan, a DSS system in the 2.3GHz band, in which the ARIB STD-B57-based Field Pickup Unit (FPU) is assigned as an incumbent system, has been studied for the secondary use of 5G systems. In this case, the incumbent FPU is a mobile system, and thus, the DSS system needs to use not only a spectrum sharing database but also radio sensors to detect primary signals with high accuracy, protect the primary system from interference, and achieve more secure spectrum sharing. This paper proposes highly efficient sensing methods for detecting the ARIB STD-B57-based FPU signals in the 2.3GHz band. The proposed methods can be applied to two types of the FPU signal; those that apply the Continuous Pilot (CP) mode pilot and the Scattered Pilot (SP) mode pilot. Moreover, we apply a sample addition method and a symbol addition method for improving the detection performance. Even in the 3GPP EVA channel environment, the proposed method can, with a probability of more than 99%, detect the FPU signal with an SNR of -10dB. In addition, we propose a quantized reference signal for reducing the implementation complexity of the complex cross-correlation circuit. The proposed reference signal can reduce the number of quantization bits of the reference signal to 2 bits for in-phase and 3 bits for orthogonal components.

  • Recent Progress in Envelope Tracking Power Amplifiers for Mobile Handset Systems Open Access

    Kenji MUKAI  Hiroshi OKABE  Satoshi TANAKA  

     
    INVITED PAPER

      Pubricized:
    2021/03/19
      Vol:
    E104-C No:10
      Page(s):
    516-525

    The Fifth-Generation new radio (5G NR) services that started in 2020 in Japan use a higher peak-to-average power ratio (PAPR) of a modulated signal with a maximum bandwidth of up to 100MHz and support multi-input/multi-output (MIMO) systems even in mobile handsets, compared to the Third-Generation (3G) and/or Fourth-Generation (4G) handsets. The 5G NR requires wideband operation for power amplifiers (PAs) used in handsets under a high PAPR signal condition. The 5G NR also requires a number of operating bands for the handsets. These requirements often cause significand degradation of the PA efficiency, consequently. The degradation is due to wideband and/or high PAPR operation as well as additional front-end loss between a PA and an antenna. Thus, the use of an efficiency enhancement technique is indispensable to 5G NR handset PAs. An envelope tracking (ET) is one of the most effective ways to improve the PA efficiency in the handsets. This paper gives recent progress in ET power amplifiers (ETPAs) followed by a brief introduction of ET techniques. The introduction describes a basic operation for an ET modulator that is a key component in the ET techniques and then gives a description of some kinds of ET modulators. In addition, as an example of a 5G NR ETPA, the latest experimental results for a 5G ETPA prototype are demonstrated while comparing overall efficiency of the ET modulator and PA in the ET mode with that in the average power tracking (APT) mode.

  • Overview and Prospects of High Power Amplifier Technology Trend for 5G and beyond 5G Base Stations Open Access

    Koji YAMANAKA  Shintaro SHINJO  Yuji KOMATSUZAKI  Shuichi SAKATA  Keigo NAKATANI  Yutaro YAMAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    526-533

    High power amplifier technologies for base transceiver stations (BTSs) for the 5th generation (5G) mobile communication systems and so-called beyond 5G (B5G) systems are reviewed. For sub-6, which is categorized into frequency range 1 (FR1) in 5G, wideband Doherty amplifiers are introduced, and a multi-band load modulation amplifier, an envelope tracking amplifier, and a digital power amplifier for B5G are explained. For millimeter wave 5G, which is categorized into frequency range 2 (FR2), GaAs and GaN MMICs operating at around 28GHz are introduced. Finally, future prospect for THz GaN devices is described.

  • Research & Development of the Advanced Dynamic Spectrum Sharing System between Different Radio Services Open Access

    Hiroyuki SHINBO  Kousuke YAMAZAKI  Yoji KISHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1198-1206

    To achieve highly efficient spectrum usage, dynamic sharing of scarce spectrum resources has recently become the subject of intense discussion. The technologies of dynamic spectrum sharing (DSS) have already been adopted or are scheduled to be adopted in a number of countries, and Japan is no exception. The authors and organizations collaborating in the research and development project being undertaken in Japan have studied a novel DSS system positioned between the fifth-generation mobile communication system (5G system) and different incumbent radio systems. Our DSS system has three characteristics. (1) It detects dynamically unused sharable spectrums (USSs) of incumbent radio systems for the space axis by using novel propagation models and estimation of the transmitting location with radio sensor information. (2) It manages USSs for the time axis by interference calculation with propagation parameters, fair assignment and future usage of USSs. (3) It utilizes USSs for the spectrum axis by using methods that decrease interference for lower separation distances. In this paper, we present an overview and the technologies of our DSS system and its applications in Japan.

  • 5G Evolution and Beyond Open Access

    Erik DAHLMAN  Gunnar MILDH  Stefan PARKVALL  Patrik PERSSON  Gustav WIKSTRÖM  Hideshi MURAI  

     
    INVITED PAPER

      Pubricized:
    2021/03/08
      Vol:
    E104-B No:9
      Page(s):
    984-991

    The paper provides an overview of the current status of the 5G evolution as well as a research outlook on the future wireless-access evolution towards 6G.

  • Field Trial of Dynamic Mode Switching for 5G New Radio Sidelink Communications towards Application to Truck Platooning Open Access

    Manabu MIKAMI  Kohei MOTO  Koichi SERIZAWA  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1035-1045

    Fifth generation mobile communication system (5G) mobile operators need to explore new use cases and/or applications together with vertical industries, the industries that are potential users of 5G, in order to fully exploit the new 5G capabilities in terms of its application. Vehicle-to-Everything (V2X) communications for platooning are considered to be one of new 5G use cases requiring low-latency and ultra-reliability are required. This paper presents our field trial of dynamic mode switching for 5G New Radio (NR) based V2X sidelink communications towards application to truck platooning. The authors build a field trial environment, for V2X communications of truck platooning, with actual large-size trucks and a prototype system employing 5G NR technologies, and performed some field trials in rural areas. In this paper, we introduce the 5G NR-V2X prototype system. Its most distinctive characteristic is that the prototype system is equipped with vehicle-to-vehicle (V2V) Direct communication radio interface (i.e., sidelink), in addition to the traditional radio interfaces between base station (BS) and user equipment (UE), i.e., downlink and uplink. Moreover, it is also most distinctive that the sidelink (SL) interface supports a new function of dynamic mode switching between two modes of BS In-Coverage mode (SL Mode-1) and BS Out-of-Coverage mode (SL Mode-2) in order to achieve seamless V2V communications between BS in-coverage area and BS out-of-coverage area. Then, we present the evaluation results on over-the-air latency performance on the V2V Direct communication of the prototype using SL dynamic mode switching with two experimental base station antenna sites in a public express highway environment towards application to truck platooning. The results demonstrate that our developed the SL dynamic mode switching achieves the seamless V2V Direct communications between in-coverage area and out-of-coverage area.

  • Field Evaluation of 5G Low Latency and High Reliability Vehicle-to-Vehicle Direct Communication for Application to Truck Platooning

    Manabu MIKAMI  Koichi SERIZAWA  Kohei MOTO  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1026-1034

    Fifth generation mobile communication system (5G) mobile operators need to explore new use cases and/or applications together with vertical industries, the industries which are potential users of 5G, in order to fully exploit the new 5G capabilities in terms of its application. Vehicular communications for platooning are considered to be one of new use cases of 5G whose low-latency and ultra-reliability are required. This paper presents our field evaluations on latency and reliability performance of 5G V2V Direct communication towards application to truck platooning. The authors build a field experimental environment, for V2X communications of truck platooning, with actual large-size trucks and a prototype system employing 5G New Radio (NR) technologies, and performed some field experiments in rural areas. In this paper, we introduce the 5G NR-V2X prototype system. Its most distinctive feature is that the prototype system is equipped with V2V Direct communication radio interface (i.e., sidelink), in addition to the traditional radio interfaces between BS and UE (i.e., downlink and uplink). Then, we present the field evaluation results of radio propagation environment results and over-the-air transmission performance of latency and reliability characteristics on the V2V Direct communication of the prototype in real public express highway environment including tunnel area as well as tunnel outside area, in order to assess 5G NR-V2X system applying to truck platooning. The radio propagation and the latency performance evaluation results clarify that the latency performance is degraded due to Hybrid Automatic Repeat reQuest (HARQ) retransmission at the outside of tunnel more possibly than the inside of tunnel, since larger path loss values can be observed at the outside of tunnel than the inside of tunnel, in V2V Direct communications of truck platooning. The over-the-air latency and reliability evaluation results confirm that it is important to set an appropriate maximum number of HARQ retransmissions since there is a trade-off problem in order to realize low latency and high reliability simultaneously.

  • 28 GHz-Band Experimental Trial Using the Shinkansen in Ultra High-Mobility Environment for 5G Evolution

    Nobuhide NONAKA  Kazushi MURAOKA  Tatsuki OKUYAMA  Satoshi SUYAMA  Yukihiko OKUMURA  Takahiro ASAI  Yoshihiro MATSUMURA  

     
    PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    1000-1008

    In order to enhance the fifth generation (5G) mobile communication system further toward 5G Evolution, high bit-rate transmission using high SHF bands (28GHz or EHF bands) should be more stable even in high-mobility environments such as high speed trains. Of particular importance, dynamic changes in the beam direction and the larger Doppler frequency shift can degrade transmission performances in such high frequency bands. Thus, we conduct the world's first 28 GHz-band 5G experimental trial on an actual Shinkansen running at a speed of 283km/h in Japan. This paper introduces the 28GHz-band experimental system used in the 5G experimental trial using the Shinkansen, and then it presents the experimental configuration in which three base stations (BSs) are deployed along the Tokaido Shinkansen railway and a mobile station is located in the train. In addition, transmission performances measured in this ultra high-mobility environment, show that a peak throughput of exceeding 1.0Gbps and successful consecutive BS connection among the three BSs.

  • Base Station Cooperation Technologies Using 28GHz-Band Digital Beamforming in High-Mobility Environments Open Access

    Tatsuki OKUYAMA  Nobuhide NONAKA  Satoshi SUYAMA  Yukihiko OKUMURA  Takahiro ASAI  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1009-1016

    The fifth-generation (5G) mobile communications system initially introduced massive multiple-input multiple-output (M-MIMO) with analog beamforming (BF) to compensate for the larger path-loss in millimeter-wave (mmW) bands. To solve a coverage issue and support high mobility of the mmW bands, base station (BS) cooperation technologies have been investigated in high-mobility environments. However, previous works assume one mobile station (MS) scenario and analog BF that does not suppress interference among MSs. In order to improve system performance in the mmW bands, fully digital BF that includes digital precoding should be employed to suppress the interference even when MSs travel in high mobility. This paper proposes two mmW BS cooperation technologies that are inter-baseband unit (inter-BBU) and intra-BBU cooperation for the fully digital BF. The inter-BBU cooperation exploits two M-MIMO antennas in two BBUs connected to one central unit by limited-bandwidth fronthaul, and the intra-BBU cooperates two M-MIMO antennas connected to one BBU with Doppler frequency shift compensation. This paper verifies effectiveness of the BS cooperation technologies by both computer simulations and outdoor experimental trials. First, it is shown that that the intra-BBU cooperation can achieve an excellent transmission performance in cases of two and four MSs moving at a velocity of 90km/h by computer simulations. Second, the outdoor experimental trials clarifies that the inter-BBU cooperation maintains the maximum throughput in a wider area than non-BS cooperation when only one MS moves at a maximum velocity of 120km/h.

  • Likelihood-Based Metric for Gibbs Sampling Turbo MIMO Detection Open Access

    Yutaro KOBAYASHI  Yukitoshi SANADA  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1046-1053

    In a multiple-input multiple-output (MIMO) system, maximum likelihood detection (MLD) is the best demodulation scheme if no a priori information is available. However, the complexity of MLD increases exponentially with the number of signal streams. Therefore, various demodulation schemes with less complexity have been proposed and some of those schemes show performance close to that of MLD. One kind of those schemes uses a Gibbs sampling (GS) algorithm. GS MIMO detection that combines feedback from turbo decoding has been proposed. In this scheme, the accuracy of GS MIMO detection is improved by feeding back loglikelihood ratios (LLRs) from a turbo decoder. In this paper, GS MIMO detection using only feedback LLRs from a turbo decoder is proposed. Through extrinsic information transfer (EXIT) chart analysis, it is shown that the EXIT curves with and without metrics calculated from received signals overlap as the feedback LLR values increase. Therefore, the proposed scheme calculates the metrics from received signals only for the first GS MIMO detection and the selection probabilities of GS MIMO detection in the following iterations are calculated based only on the LLRs from turbo decoders. Numerical results obtained through computer simulation show that the performance of proposed GS turbo MIMO detection is worse than that of conventional GS turbo MIMO detection when the number of GS iterations is small. However the performance improves as the number of GS iterations increases. When the number of GS iterations is 30 or more, the bit error rate (BER) performance of the proposed scheme is equivalent to that of the conventional scheme. Therefore, the proposed scheme can reduce the computational complexity of selection probability calculation in GS turbo MIMO detection.

  • Demonstration Experiment of a 5G Touchless Gate Utilizing Directional Beam and Mobile Edge Computing

    Naoto TSUMACHI  Masaya SHIBAYAMA  Ryuji KOBAYASHI  Issei KANNO  Yasuhiro SUEGARA  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1017-1025

    In March 2020, the 5th generation mobile communication system (5G) was launched in Japan. Frequency bands of 3.7GHz, 4.5GHz and 28GHz were allocated for 5G services, and the 5G use cases fall into three broad categories: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC) and Ultra-Reliable Low Latency Communication (URLLC). The use cases and services that take advantage of the characteristics of each category are expected to be put to practical use, and experiments of practical use are underway. This paper introduces and demonstrates a touchless gate that can identify, authenticate and allow passage through the gate by using these features and 5G beam tracking to estimate location by taking advantage of the low latency of 5G and the straightness of the 28GHz band radio wave and its resistance to spreading. Since position estimation error due to reflected waves and other factors has been a problem, we implement an algorithm that tracks the beam and estimates the user's line of movement, and by using an infrared sensor, we made it possible to identify the gate through which the user passes with high probability. We confirmed that the 5G touchless gate is feasible for gate passage. In addition, we demonstrate that a new service based on high-speed high-capacity communication is possible at gate passage by taking advantage of the wide bandwidth of the 28GHz band. Furthermore, as a use case study of the 5G touchless gate, we conducted a joint experiment with an airline company.

  • Two-Step User Selection Algorithm in Multi-User Massive MIMO with Hybrid Beamforming for 5G Evolution

    Nobuhide NONAKA  Satoshi SUYAMA  Tatsuki OKUYAMA  Kazushi MURAOKA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2021/04/07
      Vol:
    E104-B No:9
      Page(s):
    1089-1096

    In order to realize the higher bit rates compared for the fifth-generation (5G) mobile communication system, massive MIMO technologies in higher frequency bands with wider bandwidth are being investigated for 5G evolution and 6G. One of practical method to realize massive MIMO in the high frequency bands is hybrid beamforming (BF). With this approach, user selection is an important function because its performance is highly affected by inter-user interference. However, the computational complexity of user selection in multi-user massive MIMO is high because MIMO channel matrix size excessive. Furthermore, satisfying user fairness by proportional fairness (PF) criteria leads to further increase of the complexity because re-calculation of precoding and postcoding matrices is required for each combination of selected users. To realize a fair and low-complexity user selection algorithm for multi-user massive MIMO employing hybrid BF, this paper proposes a two-step user selection algorithm that combines PF based user selection and chordal distance user selection. Computer simulations show that the proposed two-step user selection algorithm with higher user fairness and lower computational complexity can achieve higher system performance than the conventional user selection algorithms.

  • Extension of ITU-R Site-General Path Loss Model in Urban Areas Based on Measurements from 2 to 66GHz Bands Open Access

    Motoharu SASAKI  Mitsuki NAKAMURA  Nobuaki KUNO  Wataru YAMADA  Naoki KITA  Takeshi ONIZAWA  Yasushi TAKATORI  Hiroyuki NAKAMURA  Minoru INOMATA  Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    849-857

    Path loss in high frequency bands above 6GHz is the most fundamental and significant propagation characteristic of IMT-2020. To develop and evaluate such high frequency bands, ITU-R SG5 WP5D recently released channel models applicable up to 100GHz. The channel models include path loss models applicable to 0.5-100GHz. A path loss model is used for cell design and the evaluation of the radio technologies, which is the main purpose of WP5D. Prediction accuracy in various locations, Tx positions, frequency bands, and other parameters are significant in cell design. This article presents the prediction accuracy of UMa path loss models which are detailed in Report ITU-R M.2412 for IMT-2020. We also propose UMa_A' as an extension model of UMa_A. While UMa_A applies different equations to the bands below and above 6GHz to predict path loss, UMa_A' covers all bands by using the equations of UMa_A below 6GHz. By using the UMa_A' model, we can predict path loss by taking various parameters (such as BS antenna height) into account over a wide frequency range (0.5-100GHz). This is useful for considering the deployment of BS antennas at various positions with a wide frequency band. We verify model accuracy by extensive measurements in the frequency bands from 2 to 66GHz, distances up to 1600 m, and an UMa environment with three Tx antenna heights. The UMa_A' extension model can predict path loss with the low RMSE of about 7dB at 2-26.4GHz, which is more accurate than the UMa_A and UMa_B models. Although the applicability of the UMa_A' model at 66GHz is unclear and needs further verification, the evaluation results for 66GHz demonstrate that the antenna height may affect the prediction accuracy at 66GHz.

  • Towards mmWave V2X in 5G and Beyond to Support Automated Driving Open Access

    Kei SAKAGUCHI  Ryuichi FUKATSU  Tao YU  Eisuke FUKUDA  Kim MAHLER  Robert HEATH  Takeo FUJII  Kazuaki TAKAHASHI  Alexey KHORYAEV  Satoshi NAGATA  Takayuki SHIMIZU  

     
    INVITED SURVEY PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/11/26
      Vol:
    E104-B No:6
      Page(s):
    587-603

    Millimeter wave provides high data rates for Vehicle-to-Everything (V2X) communications. This paper motivates millimeter wave to support automated driving and begins by explaining V2X use cases that support automated driving with references to several standardization bodies. The paper gives a classification of existing V2X standards: IEEE802.11p and LTE V2X, along with the status of their commercial deployment. Then, the paper provides a detailed assessment on how millimeter wave V2X enables the use case of cooperative perception. The explanations provide detailed rate calculations for this use case and show that millimeter wave is the only technology able to achieve the requirements. Furthermore, specific challenges related to millimeter wave for V2X are described, including coverage enhancement and beam alignment. The paper concludes with some results from three studies, i.e. IEEE802.11ad (WiGig) based V2X, extension of 5G NR (New Radio) toward mmWave V2X, and prototypes of intelligent street with mmWave V2X.

  • User Scheduling with Beam Selection for Full Digital Massive MIMO Base Station

    Masahito YATA  Go OTSURU  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/10/15
      Vol:
    E104-B No:4
      Page(s):
    428-435

    In this paper, user scheduling with beam selection for full-digital massive multi-input multi-output (MIMO) is proposed. Inter-user interference (IUI) can be canceled by precoding such as zero-forcing at a massive MIMO base station if ideal hardware implementation is assumed. However, owing to the non-ideal characteristics of hardware components, IUI occurs among multiple user terminals allocated on the same resource. Thus, in the proposed scheme, the directions of beams for allocated user terminals are adjusted to maximize the total user throughput. User allocation based on the user throughput after the adjustment of beam directivity is then carried out. Numerical results obtained through computer simulation show that when the number of user terminals in the cell is two and the number of user terminals allocated to one resource block (RB) is two, the throughput per subcarrier per subframe improves by about 3.0 bits. On the other hand, the fairness index (FI) is reduced by 0.03. This is because only the probability in the high throughput region increases as shown in the cumulative distribution function (CDF) of throughput per user. Also, as the number of user terminals in the cell increases, the amount of improvement in throughput decreases. As the number of allocated user terminals increases, more user terminals are allocated to the cell-edge, which reduces the average throughput.

  • Experimental Verification of SDN/NFV in Integrated mmWave Access and Mesh Backhaul Networks Open Access

    Makoto NAKAMURA  Hiroaki NISHIUCHI  Jin NAKAZATO  Konstantin KOSLOWSKI  Julian DAUBE  Ricardo SANTOS  Gia Khanh TRAN  Kei SAKAGUCHI  

     
    PAPER-Network

      Pubricized:
    2020/09/29
      Vol:
    E104-B No:3
      Page(s):
    217-228

    In this paper, a Proof-of-Concept (PoC) architecture is constructed, and the effectiveness of mmWave overlay heterogeneous network (HetNet) with mesh backhaul utilizing route-multiplexing and Multi-access Edge Computing (MEC) utilizing prefetching algorithm is verified by measuring the throughput and the download time of real contents. The architecture can cope with the intensive mobile data traffic since data delivery utilizes multiple backhaul routes based on the mesh topology, i.e. route-multiplexing mechanism. On the other hand, MEC deploys the network edge contents requested in advance by nearby User Equipment (UE) based on pre-registered context information such as location, destination, demand application, etc. to the network edge, which is called prefetching algorithm. Therefore, mmWave access can be fully exploited even with capacity-limited backhaul networks by introducing the proposed algorithm. These technologies solve the problems in conventional mmWave HetNet to reduce mobile data traffic on backhaul networks to cloud networks. In addition, the proposed architecture is realized by introducing wireless Software Defined Network (SDN) and Network Function Virtualization (NFV). In our architecture, the network is dynamically controlled via wide-coverage microwave band links by which UE's context information is collected for optimizing the network resources and controlling network infrastructures to establish backhaul routes and MEC servers. In this paper, we develop the hardware equipment and middleware systems, and introduce these algorithms which are used as a driver of IEEE802.11ad and open source software. For 5G and beyond, the architecture integrated in mmWave backhaul, MEC and SDN/NFV will support some scenarios and use cases.

  • Transparent Glass Quartz Antennas on the Windows of 5G-Millimeter-Wave-Connected Cars

    Osamu KAGAYA  Yasuo MORIMOTO  Takeshi MOTEGI  Minoru INOMATA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    64-72

    This paper proposes a transparent glass quartz antenna for 5G-millimeter-wave-connected vehicles and clarifies the characteristics of signal reception when the glass antennas are placed on the windows of a vehicle traveling in an urban environment. Synthetic fused quartz is a material particularly suited for millimeter-wave devices owing to its excellent low transmission loss. Realizing synthetic fused quartz devices requires accurate micromachining technology specialized for the material coupled with the material technology. This paper presents a transparent antenna comprising a thin mesh pattern on a quartz substrate for installation on a vehicle window. A comparison of distributed transparent antennas and an omnidirectional antenna shows that the relative received power of the distributed antenna system is higher than that of the omnidirectional antenna. In addition, results show that the power received is similar when using vertically and horizontally polarized antennas. The design is verified in a field test using transparent antennas on the windows of a real vehicle.

  • Optical Wireless Communication: A Candidate 6G Technology? Open Access

    Shintaro ARAI  Masayuki KINOSHITA  Takaya YAMAZATO  

     
    INVITED PAPER

      Vol:
    E104-A No:1
      Page(s):
    227-234

    We discuss herein whether an optical wireless communication (OWC) system can be a candidate for post 5G or 6G cellular communication. Almost once per decade, cellular mobile communication is transformed by a significant evolution, with each generation developing a distinctive concept or technology. Interestingly, similar trends have occurred in OWC systems based on visible light and light fidelity (Li-Fi). Unfortunately, OWC is currently relegated to a limited role in any 5G scenario, but the debate whether this is unavoidable has yet to be settled. Whether OWC is adopted post 5G or 6G is not the vital issue; rather, the aim should be that OWC coexists with 5G and 6G communication technologies. In working toward this goal, research and development in OWC will continue to extend its benefits and standardize its systems so that it can be widely deployed in the market. For example, given that a standard already exists for a visible-light beacon identifier and Li-Fi, a service using this standard should be developed to satisfy user demand. Toward this end, we propose herein a method for visible-light beacon identification that involves using a rolling shutter to receive visible-light communications with a smartphone camera. In addition, we introduce a rotary LED transmitter for image-sensor communication.

  • A Vulnerability in 5G Authentication Protocols and Its Countermeasure

    Xinxin HU  Caixia LIU  Shuxin LIU  Jinsong LI  Xiaotao CHENG  

     
    LETTER-Formal Approaches

      Pubricized:
    2020/03/27
      Vol:
    E103-D No:8
      Page(s):
    1806-1809

    5G network will serve billions of people worldwide in the near future and protecting human privacy from being violated is one of its most important goals. In this paper, we carefully studied the 5G authentication protocols (namely 5G AKA and EAP-AKA') and a location sniffing attack exploiting 5G authentication protocols vulnerability is found. The attack can be implemented by an attacker through inexpensive devices. To cover this vulnerability, a fix scheme based on the existing PKI mechanism of 5G is proposed to enhance the authentication protocols. The proposed scheme is successfully verified with formal methods and automatic verification tool TAMARIN. Finally, the communication overhead, computational cost and storage overhead of the scheme are analyzed. The results show that the security of the fixed authentication protocol is greatly improved by just adding a little calculation and communication overhead.

41-60hit(137hit)