The search functionality is under construction.

Keyword Search Result

[Keyword] 5G(137hit)

81-100hit(137hit)

  • Towards Autonomous Security Assurance in 5G Infrastructures Open Access

    Stefan COVACI  Matteo REPETTO  Fulvio RISSO  

     
    INVITED PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    401-409

    5G infrastructures will heavily rely on novel paradigms such as Network Function Virtualization and Service Function Chaining to build complex business chains involving multiple parties. Although virtualization of security middleboxes looks a common practice today, we argue that this approach is inefficient and does not fit the peculiar characteristics of virtualized environments. In this paper, we outline a new paradigm towards autonomous security assurance in 5G infrastructures, leveraging service orchestration for semi-autonomous management and reaction, yet decoupling security management from service graph design. Our work is expected to improve the design and deployment of complex business chains, as well as the application of artificial intelligence and machine learning techniques over large and intertwined security datasets. We describe the overall concept and architecture, and discuss in details the three architectural layers. We also report preliminary work on implementation of the system, by introducing relevant technologies.

  • A Deadline-Aware Scheduling Scheme for Connected Car Services Using Mobile Networks with Quality Fluctuation Open Access

    Nobuhiko ITOH  Motoki MORITA  Takanori IWAI  Kozo SATODA  Ryogo KUBO  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    474-483

    Traffic collision is an extremely serious issue in the world today. The World Health Organization (WHO) reported the number of road traffic deaths globally has plateaued at 1.25 million a year. In an attempt to decrease the occurrence of such traffic collisions, various driving systems for detecting pedestrians and vehicles have been proposed, but they are inadequate as they cannot detect vehicles and pedestrians in blind places such as sharp bends and blind intersections. Therefore, mobile networks such as long term evolution (LTE), LTE-Advanced, and 5G networks are attracting a great deal of attention as platforms for connected car services. Such platforms enable individual devices such as vehicles, drones, and sensors to exchange real-time information (e.g., location information) with each other. To guarantee effective connected car services, it is important to deliver a data block within a certain maximum tolerable delay (called a deadline in this work). The Third Generation Partnership Project (3GPP) stipulates that this deadline be 100 ms and that the arrival ratio within the deadline be 0.95. We investigated an intersection at which vehicle collisions often occur to evaluate a realistic environment and found that schedulers such as proportional fairness (PF) and payload-size and deadline-aware (PayDA) cannot satisfy the deadline and arrival ratio within the deadline, especially as network loads increase. They fail because they do not consider three key elements — radio quality, chunk size, and the deadline — when radio resources are allocated. In this paper, we propose a deadline-aware scheduling scheme that considers chunk size and the deadline in addition to radio quality and uses them to prioritize users in order to meet the deadline. The results of a simulation on ns-3 showed that the proposed method can achieve approximately four times the number of vehicles satisfying network requirements compared to PayDA.

  • Technology and Standards Accelerating 5G Commercialization Open Access

    Ashiq KHAN  Atsushi MINOKUCHI  Koji TSUBOUCHI  Goro KUNITO  Shigeru IWASHINA  

     
    INVITED PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    410-417

    Communications industry will see dramatic changes with the arrival of 5G. 5G is not only about high capacity and ultra-low latency, but also about accommodating Verticals, providing newer flexibility in business development and agility. Network slicing has become an enabler for on-demand accommodation of such Verticals in a mobile network. To support such new features, 3GPP is continuing standardization of a 5G system with all necessary requirements in mind. This paper provides a detailed view of the standards and the technologies that'll make 5G a reality. Specifically, this paper focuses on the new 5G Radio Access Network (RAN), network slicing enabled new 5G Core (5GC) Network, and new management system capable of handling network slicing related management aspect of a mobile network.

  • RAN Slicing to Realize Resource Isolation Utilizing Ordinary Radio Resource Management for Network Slicing

    Daisuke NOJIMA  Yuki KATSUMATA  Yoshifumi MORIHIRO  Takahiro ASAI  Akira YAMADA  Shigeru IWASHINA  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    484-495

    In the context of resource isolation for network slicing, this paper introduces two resource allocation methods especially for the radio access network (RAN) part. Both methods can be implemented by slight modification of the ordinary packet scheduling algorithm such as the proportional fairness algorithm, and guarantee resource isolation by limiting the maximum number of resource blocks (RBs) allocated to each slice. Moreover, since both methods flexibly allocate RBs to the entire system bandwidth, there are cases in which the throughput performance is improved compared to when the system bandwidth is divided in a static manner, especially in a frequency selective channel environment. Numerical results show the superiority of these methods to dividing simply the system bandwidth in a static manner, and show the difference between the features of the methods in terms of the throughput performance of each slice.

  • 5G Experimental Trials for Ultra-Reliable and Low Latency Communications Using New Frame Structure

    Masashi IWABUCHI  Anass BENJEBBOUR  Yoshihisa KISHIYAMA  Guangmei REN  Chen TANG  Tingjian TIAN  Liang GU  Yang CUI  Terufumi TAKADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/08/20
      Vol:
    E102-B No:2
      Page(s):
    381-390

    The fifth generation mobile communications (5G) systems will need to support the ultra-reliable and low-latency communications (URLLC) to enable future mission-critical applications, e.g., self-driving cars and remote control. With the aim of verifying the feasibility of URLLC related 5G requirements in real environments, field trials of URLLC using a new frame structure are conducted in Yokohama, Japan. In this paper, we present the trial results and investigate the impact of the new frame structure and retransmission method on the URLLC performance. To reduce the user-plane latency and improve the packet success probability, a wider subcarrier spacing, self-contained frame structure, and acknowledgement/negative acknowledgement-less (ACK/NACK-less) retransmission are adopted. We verify the feasibility of URLLC in actual field tests using our prototype test-bed while implementing these techniques. The results show that for the packet size of 32 bytes the URLLC related requirements defined by the 3GPP are satisfied even at low signal-to-noise ratios or at non-line-of-sight transmission.

  • Low Power and Reduced Hardware UWB Beamformers for Future 5G Communications Open Access

    John L. VOLAKIS  Rimon HOKAYEM  Satheesh Bojja VENKATAKRISHNAN  Elias A. ALWAN  

     
    INVITED PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    166-173

    We present a novel hybrid beamforming architecture for high speed 5G technologies. The architecture combines several new concepts to achieve significant hardware and cost reduction for large antenna arrays. Specifically, we employ an on-site code division multiplexing scheme to group several antenna elements into a single analog-to-digital converter (ADC). This approach significantly reduces analog hardware and power requirements by a factor of 8 to 32. Additionally, we employ a novel analog frequency independent beamforming scheme to eliminate phase shifters altogether and allow for coherent combining at the analog front-end. This approach avoids traditional phase-shifter-based approaches typically associated with bulky and inefficient components. Preliminary analysis shows that for an array of 800 elements, as much as 97% reduction in cost and power is achieved using the hybrid beamformer as compared to conventional beamformer systems.

  • Real Challenge of Mobile Networks Toward 5G — An Expectation for Antennas & Propagation — Open Access

    Fumio WATANABE  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    182-188

    The next generation mobile system “5G” are under research, development and standardization for a service start of around year 2020. It is likely to use frequency bands higher than existing bands to have wider bandwidth for high throughput services. This paper reviews technical issues on higher frequency bands applying mobile systems including system trials and use case trials. It identifies expectations for antennas & propagation studies toward 5G era.

  • A 2-5GHz Wideband Inductorless Low Noise Amplifier for LTE and Intermediate-Frequency-Band 5G Applications

    Youming ZHANG  Fengyi HUANG  Lijuan YANG  Xusheng TANG  Zhen CHEN  

     
    LETTER

      Vol:
    E102-A No:1
      Page(s):
    209-210

    This paper presents a wideband inductorless noise-cancelling balun LNA with two gain modes, low NF, and high-linearity for LTE and intermediate-frequency-band (eg. 3.3-3.6GHz, 4.8-5GHz) 5G applications fabricated in 65nm CMOS. The proposed LNA is bonding tested and exhibits a minimum NF of 2.2dB and maximum IIP3 of -3.5dBm. Taking advantage of an off-chip bias inductor in CG stage and a cross-coupled buffer, the LNA occupies high operation frequency up to 5GHz with remarkable linearity and NF as well as compact area.

  • Radio Propagation Prediction Method Using Point Cloud Data Based on Hybrid of Ray-Tracing and Effective Roughness Model in Urban Environments

    Minoru INOMATA  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Motoharu SASAKI  Yasushi TAKATORI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/10
      Vol:
    E102-B No:1
      Page(s):
    51-62

    This paper proposes a radio propagation prediction method that uses point cloud data based on a hybrid of the ray-tracing (RT) method and an effective roughness (ER) model in urban environments for the fifth generation mobile communications system using high frequency bands. The proposed prediction method incorporates propagation characteristics that consider diffuse scattering from surface irregularities. The validity of the proposed method is confirmed by comparisons of measurement and prediction results gained from the proposed method and a conventional RT method based on power delay and angular profiles. From predictions based on the power delay and angular profiles, we find that the proposed method, assuming the roughness of σh=1mm, accurately predicts the propagation characteristics in the 20GHz band for urban line-of-sight environments. The prediction error for the delay spread is 2.1ns to 9.7ns in an urban environment.

  • Performance of MMSE Interference Rejection Followed by Joint MLD for DAN

    Hirokazu MIYAGI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/06/04
      Vol:
    E101-B No:12
      Page(s):
    2471-2478

    This paper applies minimum mean square error (MMSE) interference rejection followed by joint maximum likelihood detection (MLD) to a receiver in a distributed antenna network (DAN). DAN receivers capture not only the desired signals, but also the interference signals from nearby uncoordinated antennas. For the overloaded signal situation, non-linear detection schemes such as joint MLD can be applied to the received signals. However, the amount of metric calculations in joint MLD increases exponentially with the number of signal streams. Therefore, MMSE interference rejection followed by MLD detection is proposed. The proposed scheme reduces the complexity by a factor of 1/2M(NT-1) where NT is the number of interference signals with 2MQAM modulation. The effect of residual interference after the MMSE interference rejection is evaluated. Numerical results obtained through computer simulation and experiment show that the performance of the proposed scheme is about 4.0dB worse at a bit error rate (BER) of 10-3 than that of the joint MLD while its complexity is four times lower for QPSK signal streams. The BER performance degradation can be suppressed to about 2.5dB by adjusting the value of the coefficient in the MMSE matrix.

  • User Satisfaction Constraint Adaptive Sleeping in 5G mmWave Heterogeneous Cellular Network

    Gia Khanh TRAN  Hidekazu SHIMODAIRA  Kei SAKAGUCHI  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2120-2130

    Densification of mmWave smallcells overlaid on the conventional macro cell is considered to be an essential technology for enhanced mobile broadband services and future IoT applications requiring high data rate e.g. automated driving in 5G communication networks. Taking into account actual measurement mobile traffic data which reveal dynamicity in both time and space, this paper proposes a joint optimization of user association and smallcell base station (BS)'s ON/OFF status. The target is to improve the system's energy efficiency while guaranteeing user's satisfaction measured through e.g. delay tolerance. Numerical analyses are conducted to show the effectiveness of the proposed algorithm against dynamic traffic variation.

  • Path Loss Model Considering Blockage Effects of Traffic Signs Up to 40GHz in Urban Microcell Environments

    Motoharu SASAKI  Minoru INOMATA  Wataru YAMADA  Naoki KITA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/02/21
      Vol:
    E101-B No:8
      Page(s):
    1891-1902

    This paper presents the characteristics of path loss produced by traffic sign blockage. Multi frequency bands including high frequency bands up to 40 GHz are analyzed on the basis of measurement results in urban microcell environments. It is shown that the measured path loss increases compared to free space path loss even on a straight line-of-sight road, and that the excess attenuation is caused by the blockage effects of traffic signs. It is also shown that the measurement area affected by the blockage becomes small as frequency increases. The blocking object occupies the same area for all frequencies, but it takes up a larger portion of the Fresnel Zone as frequency increases. Therefore, if blockage occurs, the excess loss in high frequency bands becomes larger than in low frequency bands. In addition, the validity of two blockage path loss models is verified on the basis of measurement results. The first is the 3GPP blockage model and the second is the proposed blockage model, which is an expanded version of the basic diffraction model in ITU-R P.526. It is shown that these blockage models can predict the path loss increased by the traffic sign blockage and that their root mean square error can be improved compared to that of the 3GPP two slope model and a free space path loss model. The 3GPP blockage model is found to be more accurate for 26.4 and 37.1GHz, while the proposed model is more accurate for 0.8, 2.2, and 4.7GHz. The results show the blockage path loss due to traffic signs is clarified in a wide frequency range, and it is verified that the 3GPP blockage model and the proposed blockage model can accurately predict the blockage path loss.

  • Toward In-Network Deep Machine Learning for Identifying Mobile Applications and Enabling Application Specific Network Slicing Open Access

    Akihiro NAKAO  Ping DU  

     
    INVITED PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1536-1543

    In this paper, we posit that, in future mobile network, network softwarization will be prevalent, and it becomes important to utilize deep machine learning within network to classify mobile traffic into fine grained slices, by identifying application types and devices so that we can apply Quality-of-Service (QoS) control, mobile edge/multi-access computing, and various network function per application and per device. This paper reports our initial attempt to apply deep machine learning for identifying application types from actual mobile network traffic captured from an MVNO, mobile virtual network operator and to design the system for classifying it to application specific slices.

  • An Approach for Virtual Network Function Deployment Based on Pooling in vEPC

    Quan YUAN  Hongbo TANG  Yu ZHAO  Xiaolei WANG  

     
    PAPER-Network

      Pubricized:
    2017/12/08
      Vol:
    E101-B No:6
      Page(s):
    1398-1410

    Network function virtualization improves the flexibility of infrastructure resource allocation but the application of commodity facilities arouses new challenges for systematic reliability. To meet the carrier-class reliability demanded from the 5G mobile core, several studies have tackled backup schemes for the virtual network function deployment. However, the existing backup schemes usually sacrifice the efficiency of resource allocation and prevent the sharing of infrastructure resources. To solve the dilemma of balancing the high level demands of reliability and resource allocation in mobile networks, this paper proposes an approach for the problem of pooling deployment of virtualized network functions in virtual EPC network. First, taking pooling of VNFs into account, we design a virtual network topology for virtual EPC. Second, a node-splitting algorithm is proposed to make best use of substrate network resources. Finally, we realize the dynamic adjustment of pooling across different domains. Compared to the conventional virtual topology design and mapping method (JTDM), this approach can achieve fine-grained management and overall scheduling of node resources; guarantee systematic reliability and optimize global view of network. It is proven by a network topology instance provided by SNDlib that the approach can reduce total resource cost of the virtual network and increase the ratio of request acceptance while satisfy the high-demand reliability of the system.

  • Scattering Characteristics of the Human Body in 67-GHz Band

    Ngochao TRAN  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Takehiro NAKAMURA  Hiroshi TOKUDA  Takao MIYAKE  Robin WANG  Zhu WEN  Hajime KITANO  Roger NICHOLS  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/12/15
      Vol:
    E101-B No:6
      Page(s):
    1434-1442

    The fifth generation (5G) system using millimeter waves is considered for application to high traffic areas with a dense population of pedestrians. In such an environment, the effects of shadowing and scattering of radio waves by human bodies (HBs) on propagation channels cannot be ignored. In this paper, we clarify based on measurement the characteristics of waves scattered by the HB for typical non-line-of-sight scenarios in street canyon environments. In these scenarios, there are street intersections with pedestrians, and the angles that are formed by the transmission point, HB, and reception point are nearly equal to 90 degrees. We use a wide-band channel sounder for the 67-GHz band with a 1-GHz bandwidth and horn antennas in the measurements. The distance parameter between antennas and the HB is changed in the measurements. Moreover, the direction of the HB is changed from 0 to 360 degrees. The evaluation results show that the radar cross section (RCS) of the HB fluctuates randomly over the range of approximately 20dB. Moreover, the distribution of the RCS of the HB is a Gaussian distribution with a mean value of -9.4dBsm and the standard deviation of 4.2dBsm.

  • A 28-GHz Fractional-N Frequency Synthesizer with Reference and Frequency Doublers for 5G Mobile Communications in 65nm CMOS

    Hanli LIU  Teerachot SIRIBURANON  Kengo NAKATA  Wei DENG  Ju Ho SON  Dae Young LEE  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    187-196

    This paper presents a 27.5-29.6GHz fractional-N frequency synthesizer using reference and frequency doublers to achieve low in-band and out-of-band phase-noise for 5G mobile communications. A consideration of the baseband carrier recovery circuit helps estimate phase noise requirement for high modulation scheme. The push-push amplifier and 28GHz balun help achieving differential signals with low out-of-band phase noise while consuming low power. A charge pump with gated offset as well as reference doubler help reducing PD noise resulting in low in-band phase noise while sampling loop filter helps reduce spurs. The proposed synthesizer has been implemented in 65nm CMOS technology achieving an in-band and out-of-band phase noise of -78dBc/Hz and -126dBc/Hz, respectively. It consumes only a total power of 33mW. The jitter-power figure-of-merit (FOM) is -231dB which is the highest among the state of the art >20GHz fractional-N PLLs using a low reference clock (<200MHz). The measured reference spurs are less than -80dBc.

  • vEPC Optimal Resource Assignment Method for Accommodating M2M Communications

    Kazuki TANABE  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Katsunori YAMAOKA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    637-647

    The 5G mobile network environment has been studied and developed, and the concept of a vEPC (Virtualized Evolved Packet Core) has been introduced as a framework for Network Functions Virtualization (NFV). Machine-to-Machine (M2M) communications in 5G networks require much faster response than are possible in 4G networks. However, if both the control plane (C-plane) and the data plane (D-plane) functions of the EPC are migrated into a single vEPC server, M2M devices and other user equipments (UEs) share the same resources. To accommodate delay-sensitive M2M sessions in vEPC networks, not only signaling performance on the C-plane but also packet processing performance on the D-plane must be optimized. In this paper, we propose a method for optimizing resource assignment of C-plane and D-plane Virtualized Network Functions (VNFs) in a vEPC server, called the vEPC-ORA method. We distinguish the communications of M2M devices and smartphones and model the vEPC server by using queueing theory. Numerical analysis of optimal resource assignment shows that our proposed method minimizes the blocking rates of M2M sessions and smartphone sessions. We also confirmed that the mean packet processing time is kept within the allowable delay for each communication type, as long as the vEPC server has enough VM resources. Moreover, we study a resource granularity effect on the optimal resource assignment. Numerical analysis under a fixed number of hardware resources of MME and S/P-GW is done for various resource granularities of the vEPC server. The evaluation results of numerical analyses showed that the vEPC-ORA method derives the optimal resource assignment in practical calculation times.

  • A Low-Power Pulse-Shaped Duobinary ASK Modulator for IEEE 802.11ad Compliant 60GHz Transmitter in 65nm CMOS

    Bangan LIU  Yun WANG  Jian PANG  Haosheng ZHANG  Dongsheng YANG  Aravind Tharayil NARAYANAN  Dae Young LEE  Sung Tae CHOI  Rui WU  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:2
      Page(s):
    126-134

    An energy efficient modulator for an ultra-low-power (ULP) 60-GHz IEEE transmitter is presented in this paper. The modulator consists of a differential duobinary coder and a semi-digital finite-impulse-response (FIR) pulse-shaping filter. By virtue of differential duobinary coding and pulse shaping, the transceiver successfully solves the adjacent-channel-power-ratio (ACPR) issue of conventional on-off-keying (OOK) transceivers. The proposed differential duobinary code adopts an over-sampling precoder, which relaxes timing requirement and reduces power consumption. The semi-digital FIR eliminates the power hungry digital multipliers and accumulators, and improves the power efficiency through optimization of filter parameters. Fabricated in a 65nm CMOS process, this modulator occupies a core area of 0.12mm2. With a throughput of 1.7Gbps/2.6Gbps, power consumption of modulator is 24.3mW/42.8mW respectively, while satisfying the IEEE 802.11ad spectrum mask.

  • Frequency Dependency of Path Loss Between Different Floors in An Indoor Office Environment at UHF and SHF Bands

    Motoharu SASAKI  Minoru INOMATA  Wataru YAMADA  Naoki KITA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Propagation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    373-382

    This paper describes analytical results obtained for floor penetration loss characteristics and their frequency dependency by measurements in multiple frequency bands, including those above 6GHz, in an indoor office environment. Measurement and analysis results confirm that the floor penetration loss depends on two dominant components: the transmission path through floors, and the path traveling through the outside building. We also clarify that these dominant paths have different path loss characteristics and frequency dependency. The transmission path through floors rapidly attenuates with large inter-floor offsets and in high frequency bands. On the other hand, the path traveling through outside of the building attenuates monotonically as the frequency increases. Therefore, the transmission path is dominant at short inter-floor offsets and low frequencies, and the path traveling through the outside is dominant at high number of floors or high frequency. Finally, we clarify that the floor penetration loss depends on the frequency dependency of the dominant path on the basis of the path loss characteristics of each dominant path.

  • High Efficiency Power Amplifiers for Mobile Base Stations: Recent Trends and Future Prospects for 5G

    Kazuaki KUNIHIRO  Shinichi HORI  Tomoya KANEKO  

     
    INVITED PAPER

      Vol:
    E101-A No:2
      Page(s):
    374-384

    Power amplifiers (PAs) are key components of mobile base stations. In the last decade, the power efficiency of PAs for 3G/4G mobile base stations has risen to over 50% as a result of employing efficiency enhancement techniques, such as Doherty, envelope tracking, and outphasing, in combination with GaN devices and digital predistortion. This trend has significantly contributed to reducing the power consumption of mobile base stations. Furthermore, digital transmitters using switch-mode PAs have the potential of breaking through the 70% efficiency level. Achieving this goal will require advances not only in circuitry but also in device technology. For active antenna systems of 5G mobile systems, ease of integration, as well as high efficiency, becomes important for PAs, and thus, Si-based devices will play a major role.

81-100hit(137hit)