The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

6861-6880hit(8214hit)

  • A Trinary-Phased Array

    Masaharu FUJITA  

     
    LETTER-Antennas and Propagation

      Vol:
    E82-B No:3
      Page(s):
    564-566

    A trinary-phased array, in which a phase quantization unit of phase shifters is 120 degrees is examined. The phase quantization unit of 120 degrees is the roughest value in practical phased array applications. Despite its rough phase quantization, the sidelobe level of less than -9 dB is attained by a genetic algorithm approach.

  • SCR : SPICE Netlist Reduction Tool

    Mototaka KURIBAYASHI  Masaaki YAMADA  Hideki TAKEUCHI  Masami MURAKATA  

     
    PAPER

      Vol:
    E82-A No:3
      Page(s):
    417-423

    This paper describes an efficient SPICE netlist reduction method, which enables collective simulation of large circuits. The method reduces a SPICE netlist to only those devices which affect the simulation results. Parts of the netlist can be significantly reduced in size, with relatively discrepancies arising between the original SPICE simulation and the reduced SPICE simulation. The authors' reduction method is more general than previous works, since it reduces circuits using the features of MOS transistors. According to experimental results, reduction rates can range from 1/2 to 1/223. Depending on the reduction, the time taken time to run a SPICE simulation was reduced by between one and two oder of magnitude. Using this method and working on the reduced netlist, SPICE could even handle netlist for very large circuits which it could not ordinarily handle. The simulation error between the original SPICE simulation and the reduced SPICE simulation was about 3.5%.

  • An IIR SC Filter Utilizing Square Roots of Transfer Function Coefficient Values

    Toshihiro MORI  Nobuaki TAKAHASHI  Tsuyoshi TAKEBE  

     
    PAPER

      Vol:
    E82-A No:3
      Page(s):
    442-449

    Recently, we proposed a low power consumption FIR switched-capacitor filter constructed with capacitors having capacitances in proportion to square roots of transfer function coefficient values. It is referred to as an FIR semi-parallel cyclic type (SPCT) filter. In this paper, we present IIR SPCT filter. It needs only a single operational amplifier, hence being low power consumption. The IIR SPCT filter has smaller total capacitance than one of the IIR parallel cyclic type (PCT) filter and better high frequency response than one of the IIR transfer function coefficient ratio (TCR) filter. As a whole, the IIR SPCT filter has middle performance of the IIR PCT and TCR filters for the total capacitance, the number of types of clock pulses, and high frequency response.

  • The Family of Regularized Parametric Projection Filters for Digital Image Restoration

    Hideyuki IMAI  Akira TANAKA  Masaaki MIYAKOSHI  

     
    PAPER-Image Theory

      Vol:
    E82-A No:3
      Page(s):
    527-534

    Optimum filters for an image restoration are formed by a degradation operator, a covariance operator of original images, and one of noise. However, in a practical image restoration problem, the degradation operator and the covariance operators are estimated on the basis of empirical knowledge. Thus, it appears that they differ from the true ones. When we restore a degraded image by an optimum filter belonging to the family of Projection Filters and Parametric Projection Filters, it is shown that small deviations in the degradation operator and the covariance matrix can cause a large deviation in a restored image. In this paper, we propose new optimum filters based on the regularization method called the family of Regularized Projection Filters, and show that they are stable to deviations in operators. Moreover, some numerical examples follow to confirm that our description is valid.

  • Using Cab Curves in the Function Field Sieve

    Ryutaroh MATSUMOTO  

     
    LETTER-Image Theory

      Vol:
    E82-A No:3
      Page(s):
    551-552

    In Adleman's Function Field Sieve algorithm solving the discrete logarithm problem in a finite field, it is assumed that a random bivariate polynomial in the certain class is absolutely irreducible with high probability. In this letter we point out that if we use Cab type random polynomials then we always get absolutely irreducible polynomials. We can also simplify the calculation of a product of many rational functions on a curve that belongs to the field of definition by the use of a Cab curve.

  • A Fast and Stable Method for Detecting and Tracking Medical Organs in MRI Sequences

    Dong Joong KANG  Chang Yong KIM  Yang Seok SEO  In So KWEON  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:2
      Page(s):
    497-499

    A discrete dynamic model for defining contours in 2-D medical images is presented. An active contour in this objective is optimized by a dynamic programming algorithm, for which a new constraint that has fast and stable properties is introduced. The internal energy of the model depends on local behavior of the contour, while the external energy is derived from image features. The algorithm is able to rapidly detect convex and concave objects even when the image quality is poor.

  • A Real-Time Low-Rate Video Compression Algorithm Using Multi-Stage Hierarchical Vector Quantization

    Kazutoshi KOBAYASHI  Kazuhiko TERADA  Hidetoshi ONODERA  Keikichi TAMARU  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    215-222

    We propose a real-time low-rate video compression algorithm using fixed-rate multi-stage hierarchical vector quantization. Vector quantization is suitable for mobile computing, since it demands small computation on decoding. The proposed algorithm enables transmission of 10 QCIF frames per second over a low-rate 29.2 kbps mobile channel. A frame is hierarchically divided by sub-blocks. A frame of images is compressed in a fixed rate at any video activity. For active frames, large sub-blocks for low resolution are mainly transmitted. For inactive frames, smaller sub-blocks for high resolution can be transmitted successively after a motion-compensated frame. We develop a compression system which consists of a host computer and a memory-based processor for the nearest neighbor search on VQ. Our algorithm guarantees real-time decoding on a poor CPU.

  • A Frame-Dependent Fuzzy Compensation Method for Speech Recognition over Time-Varying Telephone Channels

    Wei-Wen HUNG  Hsiao-Chuan WANG  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E82-D No:2
      Page(s):
    431-438

    Speech signals transmitted over telephone network often suffer from interference due to ambient noise and channel distortion. In this paper, a novel frame-dependent fuzzy channel compensation (FD-FCC) method employing two-stage bias subtraction is proposed to minimize the channel effect. First, through maximum likelihood (ML) estimation over the set of all word models, we choose the word model which is best matched with the input utterance. Then, based upon this word model, a set of mixture biases can be derived by averaging the cepstral differences between the input utterance and the chosen model. In the second stage, instead of using a single bias, a frame-dependent bias is calculated for each input frame to equalize the channel variations in the input utterance. This frame-dependent bias is achieved by the convex combination of those mixture biases which are weighted by a fuzzy membership function. Experimental results show that the channel effect can be effectively canceled even though the additive background noise is involved in a telephone speech recognition system.

  • Para BIT:Parallel Optical Interconnection for Large-Capacity ATM Switching Systems

    Kosuke KATSURA  Yasuhiro ANDO  Mitsuo USUI  Akira OHKI  Nobuo SATO  Nobuaki MATSUURA  Nobuyuki TANAKA  Toshiaki KAGAWA  Makoto HIKITA  

     
    INVITED PAPER-Assembly and Packaging Technologies

      Vol:
    E82-B No:2
      Page(s):
    412-421

    We have been working on a project called ParaBIT (for parallel inter-board optical interconnection technology) to achieve large-capacity switching systems. The ParaBIT module being developed as the first step in this project is a front-end module with 40 channels providing throughput of 28 Gb/s, cost-effectiveness and compactness. To realize the module, this project has developed five novel technologies: (1) 850-nm 10-ch Vertical-cavity Surface-emitting laser (VCSEL) arrays as very cost-effective light sources, (2) new high-density multiport bare fiber connectors that do not need a ferrule and spring, (3) passive optical alignment using polymeric optical waveguide film with a 45-degree mirror for coupling to the optical array chips and the waveguide, (4) transferred multichip bonding to mount optical array chips on a substrate with a positioning error of only a few micrometers, and (5) simple electronic circuits with a fixed-decision-level receiver and an APC-less transmitter, and low power consumption. Experimental results show that the design targets of throughput of 700 Mb/s per channel and a compact and cost-effectiveness structure were met. Thus, ParaBIT is a promising technology for large-capacity switching systems.

  • All-Optical Switching in Novel Waveguide X-Junctions with Localized Nonlinearity

    Hiroshi MURATA  Masayuki IZUTSU  Tadasi SUETA  

     
    PAPER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    321-326

    We propose novel all-optical functional devices using waveguide X-junctions with localized third order optical nonlinearity, where one branch is made from a Kerr-like nonlinear material and the rest are made from linear ones. All-optical switching operations can be obtained because of bistable like nonlinear dispersion characteristics in linear and nonlinear coupled guided-wave systems. The performances of the devices are analyzed by the Beam Propagation Method (BPM) modified for nonlinear waveguides combined with the nonlinear normal mode analysis. The methods to construct the waveguides with localized nonlinearity are also discussed by utilizing the technologies for the selective control of a band-gap energy of semiconductor Multi Quantum Well (MQW) structures and the performances of the designed devices are presented.

  • Feature-Specification Algorithm Based on Snake Model for Facial Image Morphing

    Aboul-Ella HASSANIEN  Masayuki NAKAJIMA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:2
      Page(s):
    439-446

    In this paper a new snake model for image morphing with semiautomated delineation which depends on Hermite's interpolation theory, is presented. The snake model will be used to specify the correspondence between features in two given images. It allows a user to extract a contour that defines a facial feature such as the lips, mouth, and profile, by only specifying the endpoints of the contour around the feature which we wish to define. We assume that the user can specify the endpoints of a curve around the features that serve as the extremities of a contour. The proposed method automatically computes the image information around these endpoints which provides the boundary conditions. Then the contour is optimized by taking this information into account near its extremities. During the iterative optimization process, the image forces are turned on progressively from the contour extremities toward the center to define the exact position of the feature. The proposed algorithm helps the user to easily define the exact position of a feature. It may also reduce the time required to establish the features of an image.

  • A Routing Algorithm for Multihop WDM Ring

    Xiaoshe DONG  Tomohiro KUDOH  Hideharu AMANO  

     
    PAPER-Computer Networks

      Vol:
    E82-D No:2
      Page(s):
    422-430

    Divisor-Skip Wavelength Division Multiplexing (DS-WDM) ring is an optical interconnection network for workstation clusters or parallel machines which can connect various number of nodes easily using wavelength division multiplexing techniques. However, the wavelength-ordered routing algorithm proposed for the DS-WDM ring requires complicated processes in each router. Here, a new routing algorithm called the comparing dimensional number routing algorithm for the DS-WDM ring is proposed and evaluated. Although the diameter and average distance are almost same as traditional wavelength-ordered routing, the cost and latency are much reduced.

  • A CMOS Analog Multiplier Free from Mobility Reduction and Body Effect

    Eitake IBARAGI  Akira HYOGO  Keitaro SEKINE  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    327-334

    This paper proposes a novel CMOS analog multiplier. As its significant merit, it is free from mobility reduction and body effect. Thus, the proposed multiplier is expected to have good linearity, comparing with conventional multipliers. Four transistors operating in the linear region constitute the input cell of the multiplier. Their sources and backgates are connected to the ground to cancel the body effect. eTheir gates are fixed to the same bias voltage to remove the effect of the mobility reduction. Input signals are applied to the drains of the input cell transistors through modified nullors. The simulation results show that THD is less than 0.8% for 0.6 V p-p input signal at 2.5-V supply voltage, and that the 3-dB bandwidth is up to about 13.3 MHz.

  • A High-Performance Switch Architecture for Free-Space Photonic Switching Systems

    Shigeo URUSHIDANI  Masayasu YAMAGUCHI  Tsuyoshi YAMAMOTO  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-B No:2
      Page(s):
    298-305

    Design and evaluation of a high-performance switch architecture for free-space photonic switching systems is described. The switch is constructed of 22 switching elements and employs special multistage interconnection patterns. The connection setup algorithm and the control procedure at the switching elements are based on a "rerouting algorithm." Performance analysis shows that the blocking probability of the switch is easily controlled by increasing the number of switching stages. Example implementations of this switch are shown in which birefringent plates, polarization controllers, etc. are used.

  • Construct Message Authentication Code with One-Way Hash Functions and Block Ciphers

    Yi-Shiung YEH  Chan-Chi WANG  

     
    PAPER-Information Security

      Vol:
    E82-A No:2
      Page(s):
    390-393

    We suggest an MAC scheme which combines a hash function and an block cipher in order. We strengthen this scheme to prevent the problem of leaking the intermediate hash value between the hash function and the block cipher by additional random bits. The requirements to the used hash function are loosely. Security of the proposed scheme is heavily dependent on the underlying block cipher. This scheme is efficient on software implementation for processing long messages and has clear security properties.

  • Derivation of the Iteration Algorithm for the Modified Pseudo-Inverse Model for Associative Memory from the Consideration of the Energy Function

    Yoshifumi OGAWA  Iku NEMOTO  

     
    LETTER-Artificial Intelligence and Cognitive Science

      Vol:
    E82-D No:2
      Page(s):
    503-507

    The pseudo-inverse model for the associative memory has an iterative algorithm converging to its weight matrix. The present letter shows that the same algorithm except for the lack of self couplings can be derived by simple consideration of the energy of the network state.

  • Acceleration Techniques for the Network Inversion Algorithm

    Hiroyuki TAKIZAWA  Taira NAKAJIMA  Masaaki NISHI  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    LETTER-Bio-Cybernetics and Neurocomputing

      Vol:
    E82-D No:2
      Page(s):
    508-511

    We apply two acceleration techniques for the backpropagation algorithm to an iterative gradient descent algorithm called the network inversion algorithm. Experimental results show that these techniques are also quite effective to decrease the number of iterations required for the detection of input vectors on the classification boundary of a multilayer perceptron.

  • A High-Performance Switch Architecture for Free-Space Photonic Switching Systems

    Shigeo URUSHIDANI  Masayasu YAMAGUCHI  Tsuyoshi YAMAMOTO  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-C No:2
      Page(s):
    246-253

    Design and evaluation of a high-performance switch architecture for free-space photonic switching systems is described. The switch is constructed of 22 switching elements and employs special multistage interconnection patterns. The connection setup algorithm and the control procedure at the switching elements are based on a "rerouting algorithm."" Performance analysis shows that the blocking probability of the switch is easily controlled by increasing the number of switching stages. Example implementations of this switch are shown in which birefringent plates, polarization controllers, etc. are used.

  • High-Speed Multi-Stage ATM Switch Based on Hierarchical Cell Resequencing Architecture and WDM Interconnection

    Seisho YASUKAWA  Naoaki YAMANAKA  Eiji OKI  Ryusuke KAWANO  

     
    PAPER-Packet and ATM Switching

      Vol:
    E82-C No:2
      Page(s):
    219-228

    This paper proposesd a non-blocking multi-stage ATM switch based on a hierarchical-cell-resequencing (HCR) mechanism and high-speed WDM interconnection and reports on its feasibility study. In a multi-stage ATM switch, cell-based routing is effective to make the switch non-blocking, because all traffic is randomly distributed over intermediate switching stages. But due to the multi-path conditions, cells may arrive out of sequence at the output of the switching fabric. Therefore, resequencing must be performed either at each output of the final switching stage or at the output of each switching stage. The basic HCR switch performs cell resequencing in a hierarchical manner when switching cells from an input-lines to a output-line. As a result, the cell sequence in each output of the basic HCR switch is recovered. A multi-stage HCR switch is constructed by interconnecting the input-lines and output-lines of these basic HCR switches in a hierarchical manner. Therefore, the cell sequence in each final output of the switching fabric is conserved in a hierarchical manner. In this way, cell-based routing becomes possible and a multi-stage ATM switch with the HCR mechanism can achieve 100% throughput without any internal speed-up techniques. Because a large-capacity multi-stage HCR switch needs a huge number of high-speed signal interconnections, a breakthrough in compact optical interconnection technology is required. Therefore, this paper proposes a WDM interconnection system with an optical router arrayed waveguide filter (AWGF) that interconnects high-speed switch elements effectively and reports its feasibility study. In this architecture, each switch element is addressed by a unique wavelength. As a result, a switch in a previous stage can transmit a cell to any switch in the next stage by only selecting its cell transmission wavelength. To make this system feasible, we developed a wide-channel-spacing optical router AWGF and compact 10-Gbit/s optical transmitter and receiver modules with a compact high-power electroabsorption distributed feedback (EA-DFB) laser and a new bit decision circuit. Using these modules, we confirmed stable operation of the WDM interconnection. This switch architecture and WDM interconnection system should enable the development of high-speed ATM switching systems that can achieve throughput of over 1 Tbit/s.

  • Development on Guided-Wave Switch Arrays

    Hirochika NAKAJIMA  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    297-304

    State of the arts on guided-wave optical switch arrays are reviewed. In this paper, electro-optic Ti:LiNbO3 devices are mainly described in comparison with crosspoint switch element structures and switch array architectures. Packaging technologies and stability problems are discussed for practical system applications. Recent development on other materials such as semiconductor waveguides, thermo-optic glass/polymer waveguides are also reviewed briefly.

6861-6880hit(8214hit)