The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERO(858hit)

81-100hit(858hit)

  • BER Analysis of WFRFT-Based Systems with Order Offset

    Yuan LIANG  Xinyu DA  Ruiyang XU  Lei NI  Dong ZHAI  Yu PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/07/25
      Vol:
    E102-B No:2
      Page(s):
    277-284

    We propose a novel bit error rate (BER) analysis model of weighted-type fractional Fourier transform (WFRFT)-based systems with WFRFT order offset Δα. By using the traditional BPSK BER analysis method, we deduce the equivalent signal noise ratio (SNR), model the interference in the channel as a Gaussian noise with non-zero mean, and provide a theoretical BER expression of the proposed system. Simulation results show that its theoretical BER performance well matches the empirical performance, which demonstrates that the theoretical BER analysis proposed in this paper is reliable.

  • Semitransparent Organic Solar Cells with Polyethylenimine Ethoxylated Interfacial Layer Using Lamination Process

    Keisuke SHODA  Masahiro MORIMOTO  Shigeki NAKA  Hiroyuki OKADA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    196-198

    Semitransparent organic solar cells were fabricated using lamination process. The devices were realized by using two independent substrates with transparent indium-tin-oxide electrode. One substrate was coated with poly(ethylenedioxy-thiophene)/poly(styrenesulfonate) layer and active layer of poly(3-hexylthiophene-2,5-diyl) (P3HT) and (6,6)-phenyl-C61 butyric acid methyl ester mixture. Another substrate was coated with ultra-thin polyethylenimine ethoxylated. The two substrates were laminated using hot press system. The device exhibited semitransparency and showed typical photovoltaic characteristics with open voltage of 0.59 V and short circuit current of 2.9 mA/cm2.

  • A Generic Construction of Mutually Orthogonal Optimal Binary ZCZ Sequence Sets

    Yubo LI  Shuonan LI  Hongqian XUAN  Xiuping PENG  

     
    LETTER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2217-2220

    In this letter, a generic method to construct mutually orthogonal binary zero correlation zone (ZCZ) sequence sets from mutually orthogonal complementary sequence sets (MOCSSs) with certain properties is presented at first. Then MOCSSs satisfying conditions are generated from binary orthogonal matrices with order N×N, where N=p-1, p is a prime. As a result, mutually orthogonal binary ZCZ sequence sets with parameters (2N2,N,N+1)-ZCZ can be obtained, the number of ZCZ sets is N. Note that each single ZCZ sequence set is optimal with respect to the theoretical bound.

  • Real-Time and Energy-Efficient Face Detection on CPU-GPU Heterogeneous Embedded Platforms

    Chanyoung OH  Saehanseul YI  Youngmin YI  

     
    PAPER-Real-time Systems

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2878-2888

    As energy efficiency has become a major design constraint or objective, heterogeneous manycore architectures have emerged as mainstream target platforms not only in server systems but also in embedded systems. Manycore accelerators such as GPUs are getting also popular in embedded domains, as well as the heterogeneous CPU cores. However, as the number of cores in an embedded GPU is far less than that of a server GPU, it is important to utilize both heterogeneous multi-core CPUs and GPUs to achieve the desired throughput with the minimal energy consumption. In this paper, we present a case study of mapping LBP-based face detection onto a recent CPU-GPU heterogeneous embedded platform, which exploits both task parallelism and data parallelism to achieve maximal energy efficiency with a real-time constraint. We first present the parallelization technique of each task for the GPU execution, then we propose performance and energy models for both task-parallel and data-parallel executions on heterogeneous processors, which are used in design space exploration for the optimal mapping. The design space is huge since not only processor heterogeneity such as CPU-GPU and big.LITTLE, but also various data partitioning ratios for the data-parallel execution on these heterogeneous processors are considered. In our case study of LBP face detection on Exynos 5422, the estimation error of the proposed performance and energy models were on average -2.19% and -3.67% respectively. By systematically finding the optimal mappings with the proposed models, we could achieve 28.6% less energy consumption compared to the manual mapping, while still meeting the real-time constraint.

  • Modified Mutually ZCZ Set of Optical Orthogonal Sequences

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:12
      Page(s):
    2415-2418

    In this paper, we propose a generation method of new mutually zero-correlation zone set of optical orthogonal sequences (MZCZ-OOS) consisting of binary and bi-phase sequence pairs based on the optical zero-correlation zone (ZCZ) sequence set. The MZCZ-OOS is composed of several small orthogonal sequence sets. The sequences that belong to same subsets are orthogonal, and there is a ZCZ between the sequence that belong to different subsets. The set is suitable for the M-ary quasi-synchronous optical code-division multiple access (M-ary/QS-OCDMA) system. The product of set size S and family size M of proposed MMZCZ-OOS is more than the upper bound of optical ZCZ sequence set, and is fewer than the that of optical orthogonal sequence set.

  • A Novel Class of Structured Zero-Correlation Zone Sequence Sets

    Takafumi HAYASHI  Takao MAEDA  Anh T. PHAM  Shinya MATSUFUJI  

     
    PAPER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2171-2183

    The present paper introduces a novel type of structured ternary sequences having a zero-correlation zone (zcz) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the zcz. The proposed zcz sequence set can be generated from an arbitrary pair of an Hadamard matrix of order lh and a binary/ternary perfect sequence of length lp. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m ≥ 0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set has lp subsets of size 2lh. The periodic correlation function and the aperiodic correlation function of the proposed sequence set have a zcz from -(2m+1-1) to 2m+1-1. The periodic correlation function and the aperiodic correlation function of the sequences of the i-th subset and k-th subset have a zcz from -2m+2-(lh+1)((j-k) mod lp) to -2m+2-(lh+1)((j-k) mod lp). The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth-generation mobile networks.

  • A High Gain Soft Switching Interleaved DC-DC Converter

    Sirous TALEBI  Ehsan ADIB  Majid DELSHAD  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:11
      Page(s):
    906-915

    This paper presents a high step-up DC-DC converter for low voltage sources such as solar cells, fuel cells and battery banks. A novel non isolated Zero-Voltage Switching (ZVS) interleaved DC-DC boost converter condition is introduced. In this converter, by using coupled inductor and active clamp circuit, the stored energy in leakage inductor is recycled. Furthermore, ZVS turn on condition for both main and clamp switches are provided. The active clamp circuit suppresses voltage spikes across the main switch and the voltage of clamp capacitor leads to higher voltage gain. In the proposed converter, by applying interleaved technique, input current ripple and also conduction losses are decreased. Also, with simple and effective method without applying any additional element, the input ripple due to couple inductors and active clamp circuit is cancelled to achieve a smooth low ripple input current. In addition, the applied technique in this paper leads to increasing the life cycle of circuit components which makes the proposed converter suitable for high power applications. Finally an experimental prototype of the presented converter with 40 V input voltage, 400 V output voltage and 200 W output power is implemented which verifies the theoretical analysis.

  • Zero-Knowledge Identification Scheme Using LDPC Codes

    Haruka ITO  Masanori HIROTOMO  Youji FUKUTA  Masami MOHRI  Yoshiaki SHIRAISHI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2688-2697

    Recently, IoT compatible products have been popular, and various kinds of things are IoT compliant products. In these devices, cryptosystems and authentication are not treated properly, and security measures for IoT devices are not sufficient. Requirements of authentication for IoT devices are power saving and one-to-many communication. In this paper, we propose a zero-knowledge identification scheme using LDPC codes. In the proposed scheme, the zero-knowledge identification scheme that relies on the binary syndrome decoding problem is improved and the computational cost of identification is reduced by using the sparse parity-check matrix of the LDPC codes. In addition, the security level, computational cost and safety of the proposed scheme are discussed in detail.

  • Dynamic Channel Assignment with Consideration of Interference and Fairness for Dense Small-Cell Networks

    Se-Jin KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:11
      Page(s):
    1984-1987

    This letter proposes a novel dynamic channel assignment (DCA) scheme with consideration of interference and fairness for the downlink of dense small-cell networks based on orthogonal frequency division multiple access-frequency division duplex. In the proposed scheme, a small-cell gateway fairly assigns subchannels to the small-cell user equipment (SUE) according to the co-tier interference from neighboring small-cell access points. From the simulation results, it is shown that the proposed DCA scheme outperforms other DCA schemes in terms of the fairness of each SUE capacity.

  • Incorporating Zero-Laxity Policy into Mixed-Criticality Multiprocessor Real-Time Systems

    Namyong JUNG  Hyeongboo BAEK  Donghyouk LIM  Jinkyu LEE  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:11
      Page(s):
    1888-1899

    As real-time embedded systems are required to accommodate various tasks with different levels of criticality, scheduling algorithms for MC (Mixed-Criticality) systems have been widely studied in the real-time systems community. Most studies have focused on MC uniprocessor systems whereas there have been only a few studies to support MC multiprocessor systems. In particular, although the ZL (Zero-Laxity) policy has been known to an effective technique in improving the schedulability performance of base scheduling algorithms on SC (Single-Criticality) multiprocessor systems, the effectiveness of the ZL policy on MC multiprocessor systems has not been revealed to date. In this paper, we focus on realizing the potential of the ZL policy for MC multiprocessor systems, which is the first attempt. To this end, we design the ZL policy for MC multiprocessor systems, and apply the policy to EDF (Earliest Deadline First), yielding EDZL (Earliest Deadline first until Zero-Laxity) tailored for MC multiprocessor systems. Then, we develop a schedulability analysis for EDZL (as well as its base algorithm EDF) to support its timing guarantee. Our simulation results show a significant schedulability improvement of EDZL over EDF, demonstrating the effectiveness of the ZL policy for MC multiprocessor systems.

  • User Satisfaction Constraint Adaptive Sleeping in 5G mmWave Heterogeneous Cellular Network

    Gia Khanh TRAN  Hidekazu SHIMODAIRA  Kei SAKAGUCHI  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2120-2130

    Densification of mmWave smallcells overlaid on the conventional macro cell is considered to be an essential technology for enhanced mobile broadband services and future IoT applications requiring high data rate e.g. automated driving in 5G communication networks. Taking into account actual measurement mobile traffic data which reveal dynamicity in both time and space, this paper proposes a joint optimization of user association and smallcell base station (BS)'s ON/OFF status. The target is to improve the system's energy efficiency while guaranteeing user's satisfaction measured through e.g. delay tolerance. Numerical analyses are conducted to show the effectiveness of the proposed algorithm against dynamic traffic variation.

  • New Constructions of Zero-Difference Balanced Functions

    Zhibao LIN  Zhengqian LI  Pinhui KE  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:10
      Page(s):
    1719-1723

    Zero-difference balanced (ZDB) functions, which have many applications in coding theory and sequence design, have received a lot of attention in recent years. In this letter, based on two known classes of ZDB functions, a new class of ZDB functions, which is defined on the group (Z2e-1×Zn,+) is presented, where e is a prime and n=p1m1p2m2…pkmk, pi is odd prime satisfying that e|(pi-1) for any 1≤i≤k . In the case of gcd(2e-1,n)=1, the new constructed ZDB functions are cyclic.

  • Improving Distantly Supervised Relation Extraction by Knowledge Base-Driven Zero Subject Resolution

    Eun-kyung KIM  Key-Sun CHOI  

     
    LETTER-Natural Language Processing

      Pubricized:
    2018/07/11
      Vol:
    E101-D No:10
      Page(s):
    2551-2558

    This paper introduces a technique for automatically generating potential training data from sentences in which entity pairs are not apparently presented in a relation extraction. Most previous works on relation extraction by distant supervision ignored cases in which a relationship may be expressed via null-subjects or anaphora. However, natural language text basically has a network structure that is composed of several sentences. If they are closely related, this is not expressed explicitly in the text, which can make relation extraction difficult. This paper describes a new model that augments a paragraph with a “salient entity” that is determined without parsing. The entity can create additional tuple extraction environments as potential subjects in paragraphs. Including the salient entity as part of the sentential input may allow the proposed method to identify relationships that conventional methods cannot identify. This method also has promising potential applicability to languages for which advanced natural language processing tools are lacking.

  • Wide Angle Scanning Circular Polarized Meta-Structured Antenna Array

    Chang-Hyun LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    2017-2023

    This paper presents a meta-structured circular polarized array antenna with wide scan angle. In order to widen the scanning angle of array antennas, this paper investigates unit antenna beamwidth and the coupling effects between array elements, both of which directly affect the steering performance. As a result, the optimal array distance, the mode configuration, and the antenna structure are elucidated. By using the features of the miniaturized mu-zero resonance (MZR) antenna, it is possible to design the antenna at optimum array distance for wide beamwidth. In addition, by modifying via position and gap configuration of the antenna, it is possible to optimize the mode configuration for optimal isolation. Finally, the 3dB steerable angle of 66° is successfully demonstrated using a 1x8 MZR CP antenna array without any additional decoupling structure. The measured beam patterns at a scan angle of 0°, 22°, 44°, and 66°agree well with the simulated beam patterns.

  • Simulation of Metal Droplet Sputtering and Molten Pool on Copper Contact under Electric Arc

    Kai BO  Xue ZHOU  Guofu ZHAI  Mo CHEN  

     
    PAPER

      Vol:
    E101-C No:9
      Page(s):
    691-698

    The micro-mechanism of molten pool and metal droplet sputtering are significant to the material erosion caused by breaking or making arcs especially for high-power switching devices. In this paper, based on Navier-Stokes equations for incompressible viscous fluid and potential equation for electric field, a 2D axially symmetric simplified hydrodynamic model was built to describe the formation of the molten metal droplet sputtering and molten pool under arc spot near electrode region. The melting process was considered by the relationship between melting metal volumetric percentage and temperature, a free surface of liquid metal deformation was solved by coupling moving mesh and the automatic re-meshing. The simulated metal droplet sputtering and molten pool behaviors are presented by the temperature and velocity distribution sequences. The influence mechanism of pressure distribution and heat flux on the formation of molten pool and metal droplet sputtering has been analyzed according to the temperature distribution and sputtering angles. Based on the simulation results, we can distinguish two different models of the molten metal droplet sputtering process: edge ejection and center ejection. Moreover, a new explanation is proposed based on calculated results with arc spot pressure distribution in the form of both unimodal and bimodal. It shows that the arc spot pressure distribution plays an important role in the metal droplet ejected from molten pool, the angle of the molten jet drop can be decreased along with the increment of the arc spot pressure.

  • Heteroepitaxial Growth of GaAs/Ge Buffer Layer on Si for Metamorphic InGaAs Lasers Open Access

    Ryo NAKAO  Masakazu ARAI  Takaaki KAKITSUKA  Shinji MATSUO  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    537-544

    We demonstrate heteroepitaxial growth of GaAs/Ge buffer layers for fabricating 1.3-µm range metamorphic InGaAs-based multiple quantum well (MQW) lasers in which the Ge buffer layer is grown using a metal-organic Ge precursor, iso-butyl germane, in a conventional metal-organic vapor phase epitaxy reactor. This enables us to grow Ge and GaAs buffer layers in the same reactor seamlessly. Transmission electron microscopy and X-ray diffraction analyses indicate that dislocations are well confined at the Ge/Si interface. Furthermore, thermal-cycle annealing significantly improves crystalline quality at the GaAs/Ge interface, resulting in higher photoluminescence intensity from the MQWs on the buffer layers.

  • Joint Optimization of FeICIC and Spectrum Allocation for Spectral and Energy Efficient Heterogeneous Networks

    Xuefang NIE  Yang WANG  Liqin DING  Jiliang ZHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/12/18
      Vol:
    E101-B No:6
      Page(s):
    1462-1475

    Cellular heterogeneous networks (HetNets) with densely deployed small cells can effectively boost network capacity. The co-channel interference and the prominent energy consumption are two crucial issues in HetNets which need to be addressed. Taking the traffic variations into account, this paper proposes a theoretical framework to analyze spectral efficiency (SE) and energy efficiency (EE) considering jointly further-enhanced inter-cell interference coordination (FeICIC) and spectrum allocation (SA) via a stochastic geometric approach for a two-tier downlink HetNet. SE and EE are respectively derived and validated by Monte Carlo simulations. To create spectrum and energy efficient HetNets that can adapt to traffic demands, a non-convex optimization problem with the power control factor, resource partitioning fraction and number of subchannels for the SE and EE tradeoff is formulated, based on which, an iterative algorithm with low complexity is proposed to achieve the sub-optimal solution. Numerical results confirm the effectiveness of the joint FeICIC and SA scheme in HetNets. Meanwhile, a system design insight on resource allocation for the SE and EE tradeoff is provided.

  • Design of Asymmetric ZPC Sequences with Multiple Subsets via Interleaving Known ZPC Sequences

    Xiaoli ZENG  Longye WANG  Hong WEN  Gaoyuan ZHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:6
      Page(s):
    982-987

    By interleaving known Z-periodic complementary (ZPC) sequence set, a new ZPC sequence set is constructed with multiple ZPC sequence subsets based on an orthogonal matrix in this work. For this novel ZPC sequence set, which refer to as asymmetric ZPC (AZPC) sequence set, its inter-subset zero cross-correlation zone (ZCCZ) is larger than intra-subset zero correlation zone (ZCZ). In particular, if select a periodic perfect complementary (PC) sequence or PC sequence set and a discrete Fourier transform (DFT) matrix, the resultant sequence set is an inter-group complementary (IGC) sequence set. When a suitable shift sequence is chosen, the obtained IGC sequence set will be optimal in terms of the corresponding theoretical bound. Compared with the existing constructions of IGC sequence sets, the proposed method can provide not only flexible ZCZ width but also flexible choice of basic sequences, which works well in both synchronous and asynchronous operational modes. The proposed AZPC sequence sets are suitable for multiuser environments.

  • Compact Controlled Reception Pattern Antenna (CRPA) Array Based on Mu-Zero Resonance (MZR) Antenna

    Jae-Gon LEE  Taek-Sun KWON  Bo-Hee CHOI  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/12/20
      Vol:
    E101-B No:6
      Page(s):
    1427-1433

    In this paper, a compact controlled reception pattern antenna (CRPA) array based on a mu-zero resonance (MZR) antenna is proposed for a global positioning system (GPS). The MZR antenna can be minimized by designing structure based in mu-negative (MNG) transmission line. The MNG transmission line can be implemented by a gap structure for the series capacitance and a shorting via for a short-ended boundary condition. The CRPA array, which operates in L1 (1.57542GHz) and L2 (1.2276GHz) bands, is designed as a cylinder with a diameter and a height of 127mm (5 inches) and 20mm, respectively, and is composed of seven radiating elements. To design the compact CRPA array with high performance attributes such as an impedance matching (VSWR) value of less than 2, an isolation between array elements (<-12dB), an axial ratio (<5dB), and a circular polarization (CP) gain (>-1dBic: L1 band and >-3dBic: L2 band), we employ two orthogonal MZR antennas, a superstrate, and chip couplers. The performances of the CRPA antenna are verified and compared by an analytic analysis, a full-wave simulation, and measurements.

  • Type-II HfS2/MoS2 Heterojunction Transistors

    Seiko NETSU  Toru KANAZAWA  Teerayut UWANNO  Tomohiro AMEMIYA  Kosuke NAGASHIO  Yasuyuki MIYAMOTO  

     
    BRIEF PAPER

      Vol:
    E101-C No:5
      Page(s):
    338-342

    We experimentally demonstrate transistor operation in a vertical p+-MoS2/n-HfS2 van der Waals (vdW) heterostructure configuration for the first time. The HfS2/MoS2 heterojunction transistor exhibits an ON/OFF ratio of 104 and a maximum drain current of 20 nA. These values are comparable with the corresponding reported values for vdW heterojunction TFETs. Moreover, we study the effect of atmospheric exposure on the subthreshold slope (SS) of the HfS2/MoS2 transistor. Unpassivated and passivated devices are compared in terms of their SS values and IDS-VGS hysteresis. While the unpassivated HfS2/MoS2 heterojunction transistor exhibits a minimum SS value of 2000 mV/dec, the same device passivated with a 20-nm-thick HfO2 film exhibits a significantly lower SS value of 700 mV/dec. HfO2 passivation protects the device from contamination caused by atmospheric moisture and oxygen and also reduces the effect of surface traps. We believe that our findings will contribute to the practical realization of HfS2-based vdW heterojunction TFETs.

81-100hit(858hit)