The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IP(4758hit)

461-480hit(4758hit)

  • Weighted Subtask Controller for Redundant Manipulator Using Auxiliary Positive Function

    Youngjun YOO  Daesung JUNG  Sangchul WON  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:8
      Page(s):
    1162-1171

    We propose a weighted subtask controller and sufficient conditions for boundedness of the controller both velocity and acceleration domain. Prior to designing the subtask controller, a task controller is designed for global asymptotic stability of task space error and subtask error. Although the subtask error converges to zero by the task controller, the boundedness of the subtask controller is also important, therefore its boundedness conditions are presented. The weighted pseudo inverse is introduced to relax the constraints of the null-space of Jacobian. Using the pseudo inverse, we design subtask controller and propose sufficient conditions for boundedness of the auxiliary signal to show the existence of the inverse kinematic solution. The results of experiments using 7-DOF WAM show the effectiveness of the proposed controller.

  • Efficient Transceiver Design for Large-Scale SWIPT System with Time-Switching and Power-Splitting Receivers

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/12
      Vol:
    E101-B No:7
      Page(s):
    1744-1751

    The combination of large-scale antenna arrays and simultaneous wireless information and power transfer (SWIPT), which can provide enormous increase of throughput and energy efficiency is a promising key in next generation wireless system (5G). This paper investigates efficient transceiver design to minimize transmit power, subject to users' required data rates and energy harvesting, in large-scale SWIPT system where the base station utilizes a very large number of antennas for transmitting both data and energy to multiple users equipped with time-switching (TS) or power-splitting (PS) receive structures. We first propose the well-known semidefinite relaxation (SDR) and Gaussian randomization techniques to solve the minimum transmit power problems. However, for these large-scale SWIPT problems, the proposed scheme, which is based on conventional SDR method, is not suitable due to its excessive computation costs, and a consensus alternating direction method of multipliers (ADMM) cannot be directly applied to the case that TS or PS ratios are involved in the optimization problem. Therefore, in the second solution, our first step is to optimize the variables of TS or PS ratios, and to achieve simplified problems. After then, we propose fast algorithms for solving these problems, where the outer loop of sequential parametric convex approximation (SPCA) is combined with the inner loop of ADMM. Numerical simulations show the fast convergence and superiority of the proposed solutions.

  • Secrecy Throughput Analysis for Time-Switching SWIPT Networks with Full-Duplex Jamming

    Xuanxuan TANG  Wendong YANG  Yueming CAI  Weiwei YANG  Yuyang ZHANG  Xiaoli SUN  Yufeng QIAN  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E101-A No:7
      Page(s):
    1136-1140

    This paper studies the secrecy throughput performance of the three-node wireless-powered networks and proposes two secure transmission schemes, namely the half-duplex maximal ratio combining (HD&MRC) scheme and the full-duplex jamming scheme based on time switching simultaneous wireless information and power transfer (FDJ&TS-SWIPT). The closed-form expressions of the secrecy throughput are derived, and intuitive comparison of the two schemes is provided. It is illustrated that the HD&MRC scheme only applies to the low and medium signal-to-noise ratio (SNR) regime. On the contrary, the suitable SNR regime of the FDJ&TS-SWIPT is much wider. It is depicted that FDJ&TS-SWIPT combing with current passive self-interference cancellation (SIC) algorithm outperforms HD&MRC significantly, especially when a medium or high transmit SNR is provided. Numerical simulations are conducted for verifying the validity of the analysis.

  • Adaptive Bundle Flow Management for Reducing Control Traffic on SDN-Enabled Multi-Radio Wireless Networks

    Yuzo TAENAKA  Kazuki MIZUYAMA  Kazuya TSUKAMOTO  

     
    PAPER-Network

      Pubricized:
    2018/01/18
      Vol:
    E101-B No:7
      Page(s):
    1685-1692

    Applying Software Defined Network (SDN) technology to wireless networks are attracting much attention. Our previous study proposed a channel utilization method based on SDN/OpenFlow technology to improve the channel utilization efficiency of the multi-channel wireless backhaul network (WBN). However, since control messages are inherently transmitted with data traffic on a same channel in WBN, it inevitably degrades the network capacity. Specifically, the amount of control messages for collecting statistical information of each flow (FlowStats) linearly increases with the number of ongoing flows, thereby being the dominant overhead for backhaul networks. In this paper, we propose a new method that prevents the increase of control traffic while retaining the network performance of the previous method. Our proposed method uses statistical information of each interface (PortStats) instead of per-flow information (FlowStats), and handles multiple flows on the interface together if possible. Otherwise, to handle individual flow, we propose a way to estimate per-flow information without introducing extra control messages. Finally, we show that the proposed method offers the same performance with the previous method, while greatly reducing the amount of control traffic.

  • Secrecy Energy Efficiency Optimization for MIMO SWIPT Systems

    Yewang QIAN  Tingting ZHANG  Haiyang ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:7
      Page(s):
    1141-1145

    In this letter, we consider a multiple-input multiple-output (MIMO) simultaneous wireless information and power transfer (SWIPT) system, in which the confidential message intended for the information receiver (IR) should be kept secret from the energy receiver (ER). Our goal is to design the optimal transmit covariance matrix so as to maximize the secrecy energy efficiency (SEE) of the system while guaranteeing the secrecy rate, energy harvesting and transmit power constraints. To deal with the original non-convex optimization problem, we propose an alternating optimization (AO)- based algorithm and also prove its convergence. Simulation results show that the proposed algorithm outperforms conventional design methods in terms of SEE.

  • A Relaxed Bit-Write-Reducing and Error-Correcting Code for Non-Volatile Memories

    Tatsuro KOJO  Masashi TAWADA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER

      Vol:
    E101-A No:7
      Page(s):
    1045-1052

    Non-volatile memories are a promising alternative to memory design but data stored in them still may be destructed due to crosstalk and radiation. The data stored in them can be restored by using error-correcting codes but they require extra bits to correct bit errors. One of the largest problems in non-volatile memories is that they consume ten to hundred times more energy than normal memories in bit-writing. It is quite necessary to reduce writing bits. Recently, a REC code (bit-write-reducing and error-correcting code) is proposed for non-volatile memories which can reduce writing bits and has a capability of error correction. The REC code is generated from a linear systematic error-correcting code but it must include the codeword of all 1's, i.e., 11…1. The codeword bit length must be longer in order to satisfy this condition. In this letter, we propose a method to generate a relaxed REC code which is generated from a relaxed error-correcting code, which does not necessarily include the codeword of all 1's and thus its codeword bit length can be shorter. We prove that the maximum flipping bits of the relaxed REC code is still limited theoretically. Experimental results show that the relaxed REC code efficiently reduce the number of writing bits.

  • User Clustering for Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Tianyi XIE  Bin LYU  Zhen YANG  Feng TIAN  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:7
      Page(s):
    1146-1150

    In this letter, we study a wireless powered communication network (WPCN) with non-orthogonal multiple access (NOMA), where the user clustering scheme that groups each two users in a cluster is adopted to guarantee the system performance. The two users in a cluster transmit data simultaneously via NOMA, while time division multiple access (TDMA) is used among clusters. We aim to maximize the system throughput by finding the optimal cluster permutation and the optimal time allocation, which can be obtained by solving the optimization problems corresponding to all cluster permutations. The closed-form solution of each optimization problem is obtained by exploiting its constraint structures. However, the complexity of this exhaustive method is quite high, we further propose a sub-optimal clustering scheme with low complexity. The simulation results demonstrate the superiority of the proposed scheme.

  • An Improved Algorithm of RPL Based on Triangle Module Operator for AMI Networks

    Yanan CAO  Muqing WU  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1602-1611

    Advanced metering infrastructure (AMI) is a kind of wireless sensor network that provides two-way communication between smart meters and city utilities in the neighborhood area of the smart grid. And the routing protocol for low-power and lossy network (RPL) is being considered for use in AMI networks. However, there still exist several problems that need to be solved, especially with respect to QoS guarantees. To address these problems, an improved algorithm of RPL based on triangle module operator named as TMO is proposed. TMO comprehensively evaluates routing metrics: end-to-end delay, number of hops, expected transmission count, node remaining energy, and child node count. Moreover, TMO uses triangle module operator to fuse membership functions of these routing metrics. Then, the node with minimum rank value will be selected as preferred parent (the next hop). Consequently, the QoS of RPL-based AMI networks can be guaranteed effectively. Simulation results show that TMO offers a great improvement over several the most popular schemes for RPL like ETXOF, OF-FL and additive composition metric manners in terms of network lifetime, average end-to-end delay, average packet loss ratio, average hop count from nodes to root, etc.

  • A Deep Reinforcement Learning Based Approach for Cost- and Energy-Aware Multi-Flow Mobile Data Offloading

    Cheng ZHANG  Zhi LIU  Bo GU  Kyoko YAMORI  Yoshiaki TANAKA  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1625-1634

    With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on to which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues such as different applications' deadlines, monetary cost and energy consumption, how the MU decides whether to offload their traffic to a complementary wireless LAN is an important issue. Previous studies assume the MU's mobility pattern is known in advance, which is not always true. In this paper, we study the MU's policy to minimize his monetary cost and energy consumption without known MU mobility pattern. We propose to use a kind of reinforcement learning technique called deep Q-network (DQN) for MU to learn the optimal offloading policy from past experiences. In the proposed DQN based offloading algorithm, MU's mobility pattern is no longer needed. Furthermore, MU's state of remaining data is directly fed into the convolution neural network in DQN without discretization. Therefore, not only does the discretization error present in previous work disappear, but also it makes the proposed algorithm has the ability to generalize the past experiences, which is especially effective when the number of states is large. Extensive simulations are conducted to validate our proposed offloading algorithms.

  • Distributed IP Refactoring: Cooperation with Optical Transport Layer and Centralized SDN

    Shohei KAMAMURA  Aki FUKUDA  Hiroki MORI  Rie HAYASHI  Yoshihiko UEMATSU  

     
    PAPER-Network System

      Pubricized:
    2018/01/10
      Vol:
    E101-B No:7
      Page(s):
    1661-1674

    By focusing on the recent swing to the centralized approach by the software defined network (SDN), this paper presents a novel network architecture for refactoring the current distributed Internet protocol (IP) by not only utilizing the SDN itself but also implementing its cooperation with the optical transport layer. The first IP refactoring is for flexible network topology reconfiguration: the global routing and explicit routing functions are transferred from the distributed routers to the centralized SDN. The second IP refactoring is for cost-efficient maintenance migration: we introduce a resource portable IP router that can behave as a shared backup router by cooperating with the optical transport path switching. Extensive evaluations show that our architecture makes the current IP network easier to configure and more scalable. We also validate the feasibility of our proposal.

  • 32-Gbit/s CMOS Receivers in 300-GHz Band Open Access

    Shinsuke HARA  Kosuke KATAYAMA  Kyoya TAKANO  Ruibing DONG  Issei WATANABE  Norihiko SEKINE  Akifumi KASAMATSU  Takeshi YOSHIDA  Shuhei AMAKAWA  Minoru FUJISHIMA  

     
    PAPER

      Vol:
    E101-C No:7
      Page(s):
    464-471

    This paper presents low-noise amplifier (LNA)-less 300-GHz CMOS receivers that operate above the NMOS unity-power-gain frequency, fmax. The receivers consist of a down-conversion mixer with a doubler- or tripler-last multiplier chain that upconverts an LO1/n signal into 300 GHz. The conversion gain of the receiver with the doubler-last multiplier is -19.5 dB and its noise figure, 3-dB bandwidth, and power consumption are 27 dB, 27 GHz, and 0.65 W, respectively. The conversion gain of the receiver with the tripler-last multiplier is -18 dB and its noise figure, 3-dB bandwidth, and power consumption are 25.5 dB, 33 GHz, and 0.41 W, respectively. The receivers achieve a wireless data rate of 32 Gb/s with 16QAM. This shows the potential of the moderate-fmax CMOS technology for ultrahigh-speed THz wireless communications.

  • Optimization of Resonant Capacitance in Wireless Power Transfer System with 3-D Stacked Two Receivers

    Shusuke YANAGAWA  Ryota SHIMIZU  Mototsugu HAMADA  Toru SHIMIZU  Tadahiro KURODA  

     
    BRIEF PAPER

      Vol:
    E101-C No:7
      Page(s):
    488-492

    This paper describes a top-down design methodology to optimize resonant capacitance in a wireless power transfer system with 3-D stacked two receivers. A 1:2 selective wireless power transfer is realized by a frequency/time division multiplexing scheme. The power transfer function is analytically formulated and the optimum tuning capacitance is derived, which is validated by comparing with system simulation results. By using the optimized values, power transfer efficiencies at 6.78MHz and 13.56MHz are simulated to be 80% and 84%, respectively, which are <3% worse than a conventional wireless power transfer system.

  • A Review of PLC-Based Broadband Two-Mode Multi/Demultiplexer Designed by Wavefront Matching Method Open Access

    Eri TAGUCHI  Takeshi FUJISAWA  Yoko YAMASHITA  Shuntaro MAKINO  Nobutomo HANZAWA  Taiji SAKAMOTO  Takashi MATSUI  Kyozo TSUJIKAWA  Kazuhide NAKAJIMA  Fumihiko YAMAMOTO  Kunimasa SAITOH  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    518-526

    A PLC based mode multi/demultiplexer based on asymmetric directional coupler has advantages in terms of compactness, mass productivity, low insertion loss, and matured reliability. However, it has relatively large wavelength dependence due to the difference of coupling length. To expand the bandwidth, we have designed two-mode (LP01/LP11a) multi/demultiplexer by wavefront matching method and demonstrated the broadband and low-loss characteristics. This paper reviews the device design by wavefront matching method and investigates the mechanism of its broadband characteristics.

  • Infants' Pain Recognition Based on Facial Expression: Dynamic Hybrid Descriptions

    Ruicong ZHI  Ghada ZAMZMI  Dmitry GOLDGOF  Terri ASHMEADE  Tingting LI  Yu SUN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/04/20
      Vol:
    E101-D No:7
      Page(s):
    1860-1869

    The accurate assessment of infants' pain is important for understanding their medical conditions and developing suitable treatment. Pediatric studies reported that the inadequate treatment of infants' pain might cause various neuroanatomical and psychological problems. The fact that infants can not communicate verbally motivates increasing interests to develop automatic pain assessment system that provides continuous and accurate pain assessment. In this paper, we propose a new set of pain facial activity features to describe the infants' facial expression of pain. Both dynamic facial texture feature and dynamic geometric feature are extracted from video sequences and utilized to classify facial expression of infants as pain or no pain. For the dynamic analysis of facial expression, we construct spatiotemporal domain representation for texture features and time series representation (i.e. time series of frame-level features) for geometric features. Multiple facial features are combined through both feature fusion and decision fusion schemes to evaluate their effectiveness in infants' pain assessment. Experiments are conducted on the video acquired from NICU infants, and the best accuracy of the proposed pain assessment approaches is 95.6%. Moreover, we find that although decision fusion does not perform better than that of feature fusion, the False Negative Rate of decision fusion (6.2%) is much lower than that of feature fusion (25%).

  • Dynamic Group-Based Antenna Selection for Uplink Multi-User MIMO in Distributed Antenna System

    Sho YOSHIDA  Kentaro NISHIMORI  Soichi ITO  Tomoki MURAKAMI  Koichi ISHIHARA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1552-1560

    This paper proposes a hardware configuration for uplink multi-user multiple-input multiple-output (MU-MIMO) transmissions in a distributed antenna system (DAS). The demand for high-speed transmission in the uplink has increased recently, because of which standardizations in LTE-advanced and IEEE 802.11ax networks is currently underway. User terminal (UT) scheduling on the downlink MU-MIMO transmission is easy even in unlicensed band such as those in wireless local area network (WLAN) systems. However, the detailed management of the UTs is difficult on the uplink MU-MIMO transmissions because of the decentralized wireless access control. The proposed configuration allows an antenna to be selected from an external device on the access point (AP). All AP antennas are divided into groups, and the received signal in each group is input to the amplitude detector via a directional coupler. Subsequently, the selected antenna is fed by a multiple-to-one switch instead of a matrix switch. To clarify the effectiveness of the proposed configuration, we conduct computer simulations based on the ray-tracing method for propagation channels in an indoor environment.

  • MRO-PUF: Physically Unclonable Function with Enhanced Resistance against Machine Learning Attacks Utilizing Instantaneous Output of Ring Oscillator

    Masayuki HIROMOTO  Motoki YOSHINAGA  Takashi SATO  

     
    PAPER

      Vol:
    E101-A No:7
      Page(s):
    1035-1044

    This paper proposes MRO-PUF, a new architecture for ring-oscillator-based physically unclonable functions (PUFs) with enhanced resistance against machine learning attacks. In the proposed PUF, an instantaneous output value of a ring oscillator is used as a response, whereas the most existing PUFs directly use propagation delays to determine the response. Since the response of the MRO-PUF is non-linear and discontinuous as the delay of the ring oscillator increases, the prediction of the response by machine learning attacks is difficult. Through the performance evaluation of the MRO-PUF with simulations, it achieves 15 times stronger resistance against machine learning attacks using a support vector machine compared to the existing ones such as an arbiter PUF and a bistable ring PUF. The MRO-PUF also achieves a sufficient level of the basic performance of PUFs in terms of uniqueness and robustness.

  • Reconstruction of Feedback Polynomial of Synchronous Scrambler Based on Triple Correlation Characteristics of M-Sequences

    Shu nan HAN  Min ZHANG  Xin hao LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/01/16
      Vol:
    E101-B No:7
      Page(s):
    1723-1732

    For the reconstruction of the feedback polynomial of a synchronous scrambler placed after a convolutional encoder, the existing algorithms require the prior knowledge of a dual word of the convolutional code. To address the case of a dual word being unknown, a new algorithm for the reconstruction of the feedback polynomial based on triple correlation characteristic of an m-sequence is proposed. First, the scrambled convolutional code sequence is divided into bit blocks; the product of the scrambled bit blocks with a dual word is proven to be an m-sequence with the same period as the synchronous scrambler. Second, based on the triple correlation characteristic of the generated m-sequence, a dual word is estimated; the generator polynomial of the generated m-sequence is computed by two locations of the triple correlation peaks. Finally, the feedback polynomial is reconstructed using the generator polynomial of the generated m-sequence. As the received sequence may contain bit errors, a method for detecting triple correlation peaks based on the constant false-alarm criterion is elaborated. Experimental results show that the proposed algorithm is effective. Ulike the existing algorithms available, there is no need to know a dual word a priori and the reconstruction result is more accurate. Moreover, the proposed algorithm is robust to bit errors.

  • Processing Multiple-User Location-Based Keyword Queries

    Yong WANG  Xiaoran DUAN  Xiaodong YANG  Yiquan ZHANG  Xiaosong ZHANG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/03/01
      Vol:
    E101-D No:6
      Page(s):
    1552-1561

    Geosocial networking allows users to interact with respect to their current locations, which enables a group of users to determine where to meet. This calls for techniques that support processing of Multiple-user Location-based Keyword (MULK) queries, which return a set of Point-of-Interests (POIs) that are 'close' to the locations of the users in a group and can provide them with potential options at the lowest expense (e.g., minimizing travel distance). In this paper, we formalize the MULK query and propose a dynamic programming-based algorithm to find the optimal result set. Further, we design two approximation algorithms to improve MULK query processing efficiency. The experimental evaluations show that our solutions are feasible and efficient under various parameter settings.

  • Accurate Error Probability Analysis of MCIK-OFDM with a Low-Complexity Detection over TWDP Fading Channels

    Donggu KIM  Hoojin LEE  Joonhyuk KANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/12/06
      Vol:
    E101-B No:6
      Page(s):
    1347-1351

    This paper derives highly accurate and effective closed-form formulas for the average upper bound on the pairwise error probability (PEP) of the multi-carrier index keying orthogonal frequency division multiplexing (MCIK-OFDM) system with low-complexity detection (i.e., greedy detection) in two-wave with diffuse power (TWDP) fading channels. To be specific, we utilize an exact moment generating function (MGF) of the signal-to-noise ratio (SNR) under TWDP fading to guarantee highly precise investigations of error probability performance; existing formulas for average PEP employ the approximate probability density function (PDF) of the SNR for TWDP fading, thereby inducing inherent approximation error. Moreover, some special cases of TWDP fading are also considered. To quantitatively reveal the achievable modulation gain and diversity order, we further derive asymptotic formulas for the upper bound on the average PEP. The obtained asymptotic expressions can be used to rapidly estimate the achievable error performance of MCIK-OFDM with the greedy detection over TWDP fading in high SNR regimes.

  • Hybrid Opto-Electrical CDM-Based Access Network

    Takahiro KODAMA  Gabriella CINCOTTI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/12/01
      Vol:
    E101-B No:6
      Page(s):
    1359-1365

    A novel adaptive code division multiplexing system with hybrid electrical and optical codes is proposed for flexible and dynamic resource allocation in next generation asynchronous optical access networks. We analyze the performance of a 10Gbps × 12 optical node unit, using hierarchical 8-level optical and 4-level electrical phase shift keying codes.

461-480hit(4758hit)