The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LD(1872hit)

121-140hit(1872hit)

  • Transient Characteristics on Super-Steep Subthreshold Slope “PN-Body Tied SOI-FET” — Simulation and Pulse Measurement — Open Access

    Takayuki MORI  Jiro IDA  Hiroki ENDO  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2020/04/23
      Vol:
    E103-C No:10
      Page(s):
    533-542

    In this study, the transient characteristics on the super-steep subthreshold slope (SS) of a PN-body tied (PNBT) silicon-on-insulator field-effect transistor (SOI-FET) were investigated using technology computer-aided design and pulse measurements. Carrier charging effects were observed on the super-steep SS PNBT SOI-FET. It was found that the turn-on delay time decreased to nearly zero when the gate overdrive-voltage was set to 0.1-0.15 V. Additionally, optimizing the gate width improved the turn-on delay. This has positive implications for the low speed problems of this device. However, long-term leakage current flows on turn-off. The carrier lifetime affects the leakage current, and the device parameters must be optimized to realize both a high on/off ratio and high-speed operation.

  • A 0.6-V Adaptive Voltage Swing Serial Link Transmitter Using Near Threshold Body Bias Control and Jitter Estimation

    Yoshihide KOMATSU  Akinori SHINMYO  Mayuko FUJITA  Tsuyoshi HIRAKI  Kouichi FUKUDA  Noriyuki MIURA  Makoto NAGATA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2020/04/09
      Vol:
    E103-C No:10
      Page(s):
    497-504

    With increasing technology scaling and the use of lower voltages, more research interest is being shown in variability-tolerant analog front end design. In this paper, we describe an adaptive amplitude control transmitter that is operated using differential signaling to reduce the temperature variability effect. It enables low power, low voltage operation by synergy between adaptive amplitude control and Vth temperature variation control. It is suitable for high-speed interface applications, particularly cable interfaces. By installing an aggressor circuit to estimate transmitter jitter and changing its frequency and activation rate, we were able to analyze the effects of the interface block on the input buffer and thence on the entire system. We also report a detailed estimation of the receiver clock-data recovery (CDR) operation for transmitter jitter estimation. These investigations provide suggestions for widening the eye opening of the transmitter.

  • Transmission System of 4K/8K UHDTV Satellite Broadcasting Open Access

    Yoichi SUZUKI  Hisashi SUJIKAI  

     
    INVITED PAPER

      Pubricized:
    2020/04/21
      Vol:
    E103-B No:10
      Page(s):
    1050-1058

    4K/8K satellite broadcasting featuring ultra-high definition video and sound was launched in Japan in 2018. This is the first 8K ultra high definition television (UHDTV) broadcasting in the world, with 16 times as many pixels as HDTV and 3D sound with 22.2ch audio. The large amount of information that has to be transmitted means that a new satellite broadcasting transmission system had to be developed. In this paper, we describe this transmission system, focusing on the technology that enables 4K/8K UHDTV satellite broadcasting.

  • Near-Field Credit Card-Sized Chipless RFID Tags Using Higher-Order Mode Resonance Frequencies of Transmission Line Resonators

    Fuminori SAKAI  Mitsuo MAKIMOTO  Koji WADA  

     
    PAPER

      Vol:
    E103-A No:9
      Page(s):
    1001-1010

    Chipless tag systems composed of multimode stepped impedance resonators (SIRs) and a reader based on near-field electromagnetic coupling have been reported. This resonator structure has advantages including a simple design due to its symmetrical structure and good discrimination accuracy because many higher-order mode resonant frequencies can be used for identification of codes. However, in addition to the disadvantage of long resonator length, the frequency response in the tag system becomes unstable due to deterioration of the isolation between the probes because the same probe structure is used for the excitor and detector. In this paper, we propose two methods to solve these problems. One is to adopt an asymmetrical SIR structure with a short-circuited end and open-circuited end, which reduces the resonator length by half while allowing the same number of codes to be generated. The other is to improve isolation between probes by applying different magnetic field and electric field structures to the two probes for excitation and detection. We also examined assignment and identification conditions and clarified that the available number of codes for a unit tag can be more than 15 bits. It becomes clear that a 75-bit chipless tag on a credit card-sized (55×86mm) printed circuit board can be designed by integrating five unit tags.

  • Cost-Efficient Recycled FPGA Detection through Statistical Performance Characterization Framework

    Foisal AHMED  Michihiro SHINTANI  Michiko INOUE  

     
    PAPER

      Vol:
    E103-A No:9
      Page(s):
    1045-1053

    Analyzing aging-induced delay degradations of ring oscillators (ROs) is an effective way to detect recycled field-programmable gate arrays (FPGAs). However, it requires a large number of RO measurements for all FPGAs before shipping, which increases the measurement costs. We propose a cost-efficient recycled FPGA detection method using a statistical performance characterization technique called virtual probe (VP) based on compressed sensing. The VP technique enables the accurate prediction of the spatial process variation of RO frequencies on a die by using a very small number of sample RO measurements. Using the predicted frequency variation as a supervisor, the machine-learning model classifies target FPGAs as either recycled or fresh. Through experiments conducted using 50 commercial FPGAs, we demonstrate that the proposed method achieves 90% cost reduction for RO measurements while preserving the detection accuracy. Furthermore, a one-class support vector machine algorithm was used to classify target FPGAs with around 94% detection accuracy.

  • A Coil Design and Control Method of Independent Active Shielding System for Leakage Magnetic Field Reduction of Wireless UAV Charger Open Access

    Jedok KIM  Jangyong AHN  Sungryul HUH  Kibeom KIM  Seungyoung AHN  

     
    INVITED PAPER

      Pubricized:
    2020/06/26
      Vol:
    E103-B No:9
      Page(s):
    889-898

    This paper proposes a single coil active shielding method of wireless unmanned aerial vehicle charger for leakage magnetic field reduction. A proposed shielding system eliminates the leakage magnetic field generated from the transmitting and receiving coils by generating the cancelling magnetic field. In order to enhance shielding effectiveness and preserve power transfer efficiency, shielding coil design parameters including radius and turns will analyze. Based on the analysis of coil design, shielding effectiveness and power transfer efficiency will estimate. In addition, shielding current control method corresponding to leakage magnetic field strength and phase will describe. A proposed shielding system has verified by simulations and experiments in terms of the total shielding effectiveness and power transfer efficiency measurements. The simulation and experimental results show that a proposed active shielding system has achieved 68.85% of average leakage magnetic field reduction with 1.92% of power transfer efficiency degradation. The shielding effectiveness and power transfer efficiency variation by coil design has been experimentally verified.

  • Improvement on Uneven Heating in Microwave Oven by Diodes-Loaded Planar Electromagnetic Field Stirrer

    Ryosuke SUGA  Naruki SAITO  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/03/30
      Vol:
    E103-C No:9
      Page(s):
    388-395

    A planar electromagnetic field stirrer with periodically arranged metal patterns and diode switches is proposed for improving uneven heating of a heated object placed in a microwave oven. The reflection phase of the proposed stirrer changes by switching the states of diodes mounted on the stirrer and the electromagnetic field in the microwave oven is stirred. The temperature distribution of a heated object located in a microwave oven was simulated and measured using the stirrer in order to evaluate the improving effect of the uneven heating. As the result, the heated parts of the objects were changed with the diode states and the improving effect of the uneven heating was experimentally indicated.

  • Development of a Low Frequency Electric Field Probe Integrating Data Acquisition and Storage

    Zhongyuan ZHOU  Mingjie SHENG  Peng LI  Peng HU  Qi ZHOU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/02/27
      Vol:
    E103-C No:8
      Page(s):
    345-352

    A low frequency electric field probe that integrates data acquisition and storage is developed in this paper. An electric small monopole antenna printed on the circuit board is used as the receiving antenna; the rear end of the monopole antenna is connected to the integral circuit to achieve the flat frequency response; the logarithmic detection method is applied to obtain a high measurement dynamic range. In addition, a Microprogrammed Control Unit is set inside to realize data acquisition and storage. The size of the probe developed is not exceeding 20 mm × 20 mm × 30 mm. The field strength 0.2 V/m ~ 261 V/m can be measured in the frequency range of 500 Hz ~ 10 MHz, achieving a dynamic range over 62 dB. It is suitable for low frequency electric field strength measurement and shielding effectiveness test of small shield.

  • A Series of PIN/Password Input Methods Resilient to Shoulder Hacking Based on Cognitive Difficulty of Tracing Multiple Key Movements

    Kokoro KOBAYASHI  Tsuyoshi OGUNI  Masaki NAKAGAWA  

     
    PAPER-Computer System

      Pubricized:
    2020/04/06
      Vol:
    E103-D No:7
      Page(s):
    1623-1632

    This paper presents a series of secure PIN/password input methods resilient to shoulder hacking. When a person inputs a PIN or password to a smartphone, tablet, banking terminal, etc., there is a risk of shoulder hacking of the PIN or the password being stolen. To decrease the risk, we propose a method that erases key-top labels, moves them smoothly and simultaneously, and lets the user touch the target key after they stopped. The user only needs to trace a single key, but peepers have to trace the movements of all the keys at the same time. We extend the method by assigning different colors, shapes, and/or sizes to keys for enhancing distinguishability, which allows all the keys to be moved instantaneously after key-top labels are erased and the user to touch the target key. We also introduce a “move backward/forward” function that allows the user to play back the movements. This series of methods does not have the highest security, but it is easy to use and does not require any changes to the server side. Results of a performance evaluation demonstrate that this method has high resistance to shoulder hacking while providing satisfactory usability without large input errors.

  • Analysis of The Similarity of Individual Knowledge and The Comprehension of Partner's Representation during Collaborative Concept Mapping with Reciprocal Kit Build Approach

    Lia SADITA  Pedro Gabriel Fonteles FURTADO  Tsukasa HIRASHIMA  Yusuke HAYASHI  

     
    PAPER-Educational Technology

      Pubricized:
    2020/04/10
      Vol:
    E103-D No:7
      Page(s):
    1722-1731

    Concept mapping is one of the instructional strategies implemented in collaborative learning to support discourse and learning. While prior studies have established its positive significance on the learning achievements and attitudes of students, they have also discovered that it can lead to students conducting less discussion on conceptual knowledge compared to procedural and team coordination. For instance, some inaccurate ideas are never challenged and can become ingrained. Designing a learning environment where individual knowledge is acknowledged and developed constructively is necessary to achieve similarity of individual knowledge after collaboration. This study applies the Reciprocal Kit Build (RKB) approach before collaborative concept mapping. The approach consists of three main phases: (1) individual map construction; (2) re-constructional map building; and (3) difference map discussion. Finally, each team will build a group map. Previous studies have shown that the visualization of similarities and differences during the third phase correlates with the improvement of concept map quality. The current paper presents our investigation on the effects of the first and second phases in terms of the final group products. We analyze the correlations between the similarity of individual knowledge represented in the first-phase maps, the comprehension of partner's representation during the second phase, and the changes of map scores. Our findings indicate that comprehension level is a stronger predictor than the similarity of individual knowledge for estimating score gain. The ways in which patterns of knowledge transfer from individual to group maps, which exhibit how the group products are built based on individual inputs, are also discussed. We illustrate that the number of shared and unshared links in the group solutions are proportionally distributed, and that the number of reconstructed links dominates the group solutions, rather than the non-reconstructed ones.

  • A Node-Grouping Based Spatial Spectrum Reuse Method for WLANs in Dense Residential Scenarios

    Jin LIU  Masahide HATANAKA  Takao ONOYE  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:7
      Page(s):
    917-927

    Lately, an increasing number of wireless local area network (WLAN) access points (APs) are deployed to serve an ever increasing number of mobile stations (STAs). Due to the limited frequency spectrum, more and more AP and STA nodes try to access the same channel. Spatial spectrum reuse is promoted by the IEEE 802.11ax task group through dynamic sensitivity control (DSC), which permits cochannel operation when the received signal power at the prospective transmitting node (PTN) is lower than an adjusted carrier sensing threshold (CST). Previously-proposed DSC approaches typically calculate the CST without node grouping by using a margin parameter that remains fixed during operation. Setting the margin has previously been done heuristically. Finding a suitable value has remained an open problem. Therefore, herein, we propose a DSC approach that employs a node grouping method for adaptive calculation of the CST at the PTN with a channel-aware and margin-free formula. Numerical simulations for dense residential WLAN scenario reveal total throughput and Jain's fairness index gains of 8.4% and 7.6%, respectively, vs. no DSC (as in WLANs deployed to present).

  • A New Similarity Model Based on Collaborative Filtering for New User Cold Start Recommendation

    Ruilin PAN  Chuanming GE  Li ZHANG  Wei ZHAO  Xun SHAO  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2020/03/03
      Vol:
    E103-D No:6
      Page(s):
    1388-1394

    Collaborative filtering (CF) is one of the most popular approaches to building Recommender systems (RS) and has been extensively implemented in many online applications. But it still suffers from the new user cold start problem that users have only a small number of items interaction or purchase records in the system, resulting in poor recommendation performance. Thus, we design a new similarity model which can fully utilize the limited rating information of cold users. We first construct a new metric, Popularity-Mean Squared Difference, considering the influence of popular items, average difference between two user's common ratings and non-numerical information of ratings. Moreover, the second new metric, Singularity-Difference, presents the deviation degree of favor to items between two users. It considers the distribution of the similarity degree of co-ratings between two users as weight to adjust the deviation degree. Finally, we take account of user's personal rating preferences through introducing the mean and variance of user ratings. Experiment results based on three real-life datasets of MovieLens, Epinions and Netflix demonstrate that the proposed model outperforms seven popular similarity methods in terms of MAE, precision, recall and F1-Measure under new user cold start condition.

  • Multimodal Analytics to Understand Self-Regulation Process of Cognitive and Behavioral Strategies in Real-World Learning

    Masaya OKADA  Yasutaka KUROKI  Masahiro TADA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/02/05
      Vol:
    E103-D No:5
      Page(s):
    1039-1054

    Recent studies suggest that learning “how to learn” is important because learners must be self-regulated to take more responsibility for their own learning processes, meta-cognitive control, and other generative learning thoughts and behaviors. The mechanism that enables a learner to self-regulate his/her learning strategies has been actively studied in classroom settings, but has seldom been studied in the area of real-world learning in out-of-school settings (e.g., environmental learning in nature). A feature of real-world learning is that a learner's cognition of the world is updated by his/her behavior to investigate the world, and vice versa. This paper models the mechanism of real-world learning for executing and self-regulating a learner's cognitive and behavioral strategies to self-organize his/her internal knowledge space. Furthermore, this paper proposes multimodal analytics to integrate heterogeneous data resources of the cognitive and behavioral features of real-world learning, to structure and archive the time series of strategies occurring through learner-environment interactions, and to assess how learning should be self-regulated for better understanding of the world. Our analysis showed that (1) intellectual achievements are built by self-regulating learning to chain the execution of cognitive and behavioral strategies, and (2) a clue to predict learning outcomes in the world is analyzing the quantity and frequency of strategies that a learner uses and self-regulates. Assessment based on these findings can encourage a learner to reflect and improve his/her way of learning in the world.

  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • Combining Parallel Adaptive Filtering and Wavelet Threshold Denoising for Photoplethysmography-Based Pulse Rate Monitoring during Intensive Physical Exercise

    Chunting WAN  Dongyi CHEN  Juan YANG  Miao HUANG  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    612-620

    Real-time pulse rate (PR) monitoring based on photoplethysmography (PPG) has been drawn much attention in recent years. However, PPG signal detected under movement is easily affected by random noises, especially motion artifacts (MA), affecting the accuracy of PR estimation. In this paper, a parallel method structure is proposed, which effectively combines wavelet threshold denoising with recursive least squares (RLS) adaptive filtering to remove interference signals, and uses spectral peak tracking algorithm to estimate real-time PR. Furthermore, we propose a parallel structure RLS adaptive filtering to increase the amplitude of spectral peak associated with PR for PR estimation. This method is evaluated by using the PPG datasets of the 2015 IEEE Signal Processing Cup. Experimental results on the 12 training datasets during subjects' walking or running show that the average absolute error (AAE) is 1.08 beats per minute (BPM) and standard deviation (SD) is 1.45 BPM. In addition, the AAE of PR on the 10 testing datasets during subjects' fast running accompanied with wrist movements can reach 2.90 BPM. Furthermore, the results indicate that the proposed approach keeps high estimation accuracy of PPG signal even with strong MA.

  • High-PSRR, Low-Voltage CMOS Current Mode Reference Circuit Using Self-Regulator with Adaptive Biasing Technique

    Kenya KONDO  Hiroki TAMURA  Koichi TANNO  

     
    PAPER-Analog Signal Processing

      Vol:
    E103-A No:2
      Page(s):
    486-491

    In this paper, we propose the low voltage CMOS current mode reference circuit using self-regulator with adaptive biasing technique. It drastically reduces the line sensitivity (LS) of the output voltage and the power supply voltage dependence of the temperature coefficient (TC). The self-regulator used in the proposed circuit adaptively generates the minimum voltage required the reference core circuit following the PVT (process, voltage and temperature) conditions. It makes possible to improve circuit performances instead of slightly increasing minimum power supply voltage. This proposed circuit has been designed and evaluated by SPICE simulation using TSMC 65nm CMOS process with 3.3V (2.5V over-drive) transistor option. From simulation results, LS is reduced to 0.0065%/V under 0.8V < VDD < 3.0V. TC is 67.6ppm/°C under the condition that the temperature range is from -40°C to 125°C and VDD range is from 0.8V to 3.0V. The power supply rejection ratio (PSRR) is less than -80.4dB when VDD is higher than 0.8V and the noise frequency is 100Hz. According to the simulation results, we could confirm that the performances of the proposed circuit are improved compared with the conventional circuit.

  • π/N Expansion to the LP01 Mode of a Step-Index N-Sided Regular-Polygonal-Core Fiber

    Naofumi KITSUNEZAKI  

     
    PAPER

      Vol:
    E103-C No:1
      Page(s):
    3-10

    Herein, we analytically derive the effective index and field distribution of the LP01 mode of a step-index N-sided regular-polygonal-core fiber. To do this, we utilize the lowest-order non-anomalous approximation of the π/N expansion. These properties are also calculated numerically and the results are compared the with approximations.

  • Good Group Sparsity Prior for Light Field Interpolation Open Access

    Shu FUJITA  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER-Image

      Vol:
    E103-A No:1
      Page(s):
    346-355

    A light field, which is equivalent to a dense set of multi-view images, has various applications such as depth estimation and 3D display. One of the essential problems in light field applications is light field interpolation, i.e., view interpolation. The interpolation accuracy is enhanced by exploiting an inherent property of a light field. One example is that an epipolar plane image (EPI), which is a 2D subset of the 4D light field, consists of many lines, and these lines have almost the same slope in a local region. This structure induces a sparse representation in the frequency domain, where most of the energy resides on a line passing through the origin. On the basis of this observation, we propose a group sparsity prior suitable for light fields to exploit their line structure fully for interpolation. Specifically, we designed the directional groups in the discrete Fourier transform (DFT) domain so that the groups can represent the concentration of the energy, and we thereby formulated an LF interpolation problem as an overlapping group lasso. We also introduce several techniques to improve the interpolation accuracy such as applying a window function, determining group weights, expanding processing blocks, and merging blocks. Our experimental results show that the proposed method can achieve better or comparable quality as compared to state-of-the-art LF interpolation methods such as convolutional neural network (CNN)-based methods.

  • An Adaptive Fusion Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check

    Yuhuan WANG  Hang YIN  Zhanxin YANG  Yansong LV  Lu SI  Xinle YU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/07/08
      Vol:
    E103-B No:1
      Page(s):
    43-51

    In this paper, we propose an adaptive fusion successive cancellation list decoder (ADF-SCL) for polar codes with single cyclic redundancy check. The proposed ADF-SCL decoder reasonably avoids unnecessary calculations by selecting the successive cancellation (SC) decoder or the adaptive successive cancellation list (AD-SCL) decoder depending on a log-likelihood ratio (LLR) threshold in the decoding process. Simulation results show that compared to the AD-SCL decoder, the proposed decoder can achieve significant reduction of the average complexity in the low signal-to-noise ratio (SNR) region without degradation of the performance. When Lmax=32 and Eb/N0=0.5dB, the average complexity of the proposed decoder is 14.23% lower than that of the AD-SCL decoder.

  • Improvement of the Quality of Visual Secret Sharing Schemes with Constraints on the Usage of Shares

    Mariko FUJII  Tomoharu SHIBUYA  

     
    PAPER

      Pubricized:
    2019/10/07
      Vol:
    E103-D No:1
      Page(s):
    11-24

    (k,n)-visual secret sharing scheme ((k,n)-VSSS) is a method to divide a secret image into n images called shares that enable us to restore the original image by only stacking at least k of them without any complicated computations. In this paper, we consider (2,2)-VSSS to share two secret images at the same time only by two shares, and investigate the methods to improve the quality of decoded images. More precisely, we consider (2,2)-VSSS in which the first secret image is decoded by stacking those two shares in the usual way, while the second one is done by stacking those two shares in the way that one of them is used reversibly. Since the shares must have some subpixels that inconsistently correspond to pixels of the secret images, the decoded pixels do not agree with the corresponding pixels of the secret images, which causes serious degradation of the quality of decoded images. To reduce such degradation, we propose several methods to construct shares that utilize 8-neighbor Laplacian filter and halftoning. Then we show that the proposed methods can effectively improve the quality of decoded images. Moreover, we demonstrate that the proposed methods can be naturally extended to (2,2)-VSSS for RGB images.

121-140hit(1872hit)