The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LF(726hit)

81-100hit(726hit)

  • Exploiting Self-Reserving Spectrum to Reduce Service Dropping Probability in Cognitive Radio Systems

    Ohyun JO  Juyeop KIM  Kyung-Seop SHIN  Gyung-Ho HWANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:4
      Page(s):
    697-701

    To improve the efficiency of spectrum utilization, cognitive radio systems attempt to use temporarily unoccupied spectrum which is referred to as a spectrum hole. To this end, QoS (Quality of Service) is one of the most important issues in practical cognitive radio systems. In this article, an efficient spectrum management scheme using self-reserving spectrum is proposed to support QoS for cognitive radio users. The self-reservation of a spectrum hole can minimize service dropping probability by using the statistical characteristics of spectrum bands while using optimum amount of resources. In addition, it realizes seamless service for users by eliminating spectrum entry procedure that includes spectrum sensing, spectrum request, and spectrum grant. Performance analysis and intensive system level simulations confirm the efficiency of the proposed algorithms.

  • A Closed-Form of 2-D Maximally Flat Diamond-Shaped Half-Band FIR Digital Filters with Arbitrary Difference of the Filter Orders Open Access

    Taiki SHINOHARA  Takashi YOSHIDA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:3
      Page(s):
    518-523

    Two-dimensional (2-D) maximally flat finite impulse response (FIR) digital filters have flat characteristics in both passband and stopband. 2-D maximally flat diamond-shaped half-band FIR digital filter can be designed very efficiently as a special case of 2-D half-band FIR filters. In some cases, this filter would require the reduction of the filter lengths for one of the axes while keeping the other axis unchanged. However, the conventional methods can realize such filters only if difference between each order is 2, 4 and 6. In this paper, we propose a closed-form frequency response of 2-D low-pass maximally flat diamond-shaped half-band FIR digital filters with arbitrary filter orders. The constraints to treat arbitrary filter orders are firstly proposed. Then, a closed-form transfer function is achieved by using Bernstein polynomial.

  • Low Power and Reduced Hardware UWB Beamformers for Future 5G Communications Open Access

    John L. VOLAKIS  Rimon HOKAYEM  Satheesh Bojja VENKATAKRISHNAN  Elias A. ALWAN  

     
    INVITED PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    166-173

    We present a novel hybrid beamforming architecture for high speed 5G technologies. The architecture combines several new concepts to achieve significant hardware and cost reduction for large antenna arrays. Specifically, we employ an on-site code division multiplexing scheme to group several antenna elements into a single analog-to-digital converter (ADC). This approach significantly reduces analog hardware and power requirements by a factor of 8 to 32. Additionally, we employ a novel analog frequency independent beamforming scheme to eliminate phase shifters altogether and allow for coherent combining at the analog front-end. This approach avoids traditional phase-shifter-based approaches typically associated with bulky and inefficient components. Preliminary analysis shows that for an array of 800 elements, as much as 97% reduction in cost and power is achieved using the hybrid beamformer as compared to conventional beamformer systems.

  • Organic Thin Film-Assisted Copper Electroless Plating on Flat/Microstructured Silicone Substrates

    Tomoya SATO  Narendra SINGH  Roland HÖNES  Chihiro URATA  Yasutaka MATSUO  Atsushi HOZUMI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    147-150

    Copper (Cu) electroless plating was conducted on planar and microstructured polydimethylsiloxane (PDMS) substrates. In this study, organic thin films terminated with nitrogen (N)-containing groups, e.g. poly (dimethylaminoethyl methacrylate) brush (PDMAEMA), aminopropyl trimethoxysilane monolayer (APTES), and polydopamine (PDA) were used to anchor palladium (Pd) catalyst. While electroless plating was successfully promoted on all sample surfaces, PDMAEMA was found to achieve the best adhesion strength to the PDMS surfaces, compared to APTES- and PDA-covered PDMS substrates, due to covalent bonding, anchoring effects of polymer chains as well as high affinity of N atoms to Pd species. Our process was also successfully applied to the electroless plating of microstructured PDMS substrates.

  • A New Attack Scheme on the Bitcoin Reward System

    Jaewoo SO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:1
      Page(s):
    300-302

    The reward of the Bitcoin system is designed to be proportional to miner's computational power. However, rogue miners can increase their rewards by using the block withholding attacks. For raising awareness on the Bitcoin reward system, a new attack scheme is proposed, where the attackers infiltrate into an open pool and launch the selfish mining as well as the block withholding attack. The simulation results demonstrate that the proposed attack outperforms the conventional block withholding attacks.

  • Design of ELF/VLF Chirp-BOK Communication Based on Modulated Heating Low Ionosphere

    Kaijie ZHOU  Huali WANG  Peipei CAO  Zhangkai LUO  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2464-2471

    Excitation of Extremely Low Frequency (ELF)/Very Low Frequency (VLF) from ionosphere,which is artificial modulated by High Frequency (HF) waves can provide a way of antenna generation for deep submarine communication. In this paper, based on plasma energy conservation equation, the theoretical model of amplitude modulation HF pump heating low ionosphere for ELF/VLF generation is established. The linear frequency modulation technique of up-chirp and down-chirp have good self-correlation and cross-correlation, by which information can be transmitted by up-chirp and down-chirp. Thus, the linear frequency modulation technique can be applied to the ionosphere ELF/VLF communication. Based on this, a Chirp-BOK (Binary Orthogonal Keying) communication scheme is proposed. Indeed the Chirp-BOK amplitude and power modulation function are designed by combining the linear frequency modulation technique with the square wave amplitude modulation technique. The simulation results show in the condition that the ionosphere is heated by the Chirp-BOK power modulation HF waves, the temperature of ionospheric electronic and the variations of conductivity have obvious frequency modulation characteristics which are the same as that of power modulation, so does the variation of ionospheric current. Thus, when the ionosphere is heated by Chirp-BOK power modulation HF waves, the up-chirp (symbol ‘0’) and down-chirp (symbol ‘1’) ELF/VLF signals can be generated.

  • Hierarchical Tensor Manifold Modeling for Multi-Group Analysis

    Hideaki ISHIBASHI  Masayoshi ERA  Tetsuo FURUKAWA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E101-A No:11
      Page(s):
    1745-1755

    The aim of this work is to develop a method for the simultaneous analysis of multiple groups and their members based on hierarchical tensor manifold modeling. The method is particularly designed to analyze multiple teams, such as sports teams and business teams. The proposed method represents members' data using a nonlinear manifold for each team, and then these manifolds are further modeled using another nonlinear manifold in the model space. For this purpose, the method estimates the role of each member in the team, and discovers correspondences between members that play similar roles in different teams. The proposed method was applied to basketball league data, and it demonstrated the ability of knowledge discovery from players' statistics. We also demonstrated that the method could be used as a general tool for multi-level multi-group analysis by applying it to marketing data.

  • Non-Cooperative Detection Method of MIMO-LFM Signals with FRFT Based on Entropy of Slice

    Yifei LIU  Jun ZHU  Bin TANG  Qi ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1940-1943

    To improve detection performance for a reconnaissance receiver, which is designed to detect the non-cooperative MIMO-LFM radar signal under low SNR condition, this letter proposed a novel signal detection method. This method is based on Fractional Fourier Transform with entropy weight (FRFTE) and autocorrelation algorithm. In addition, the flow chart and feasibility of the proposed algorithm are analyzed. Finally, applying our method to Wigner Hough Transform (WHT), we demonstrate the superiority of this method by simulation results.

  • A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Integer Codes

    Hajime MATSUI  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:11
      Page(s):
    1952-1956

    Integer codes are defined by error-correcting codes over integers modulo a fixed positive integer. In this paper, we show that the construction of integer codes can be reduced into the cases of prime-power moduli. We can efficiently search integer codes with small prime-power moduli and can construct target integer codes with a large composite-number modulus. Moreover, we also show that this prime-factorization reduction is useful for the construction of self-orthogonal and self-dual integer codes, i.e., these properties in the prime-power moduli are preserved in the composite-number modulus. Numerical examples of integer codes and generator matrices demonstrate these facts and processes.

  • Development of a Low Standby Power Six-Transistor CMOS SRAM Employing a Single Power Supply

    Nobuaki KOBAYASHI  Tadayoshi ENOMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:10
      Page(s):
    822-830

    We developed and applied a new circuit, called the “Self-controllable Voltage Level (SVL)” circuit, not only to expand both “write” and “read” stabilities, but also to achieve a low stand-by power and data holding capability in a single low power supply, 90-nm, 2-kbit, six-transistor CMOS SRAM. The SVL circuit can adaptively lower and higher the word-line voltages for a “read” and “write” operation, respectively. It can also adaptively lower and higher the memory cell supply voltages for the “write” and “hold” operations, and “read” operation, respectively. This paper focuses on the “hold” characteristics and the standby power dissipations (PST) of the developed SRAM. The average PST of the developed SRAM is only 0.984µW, namely, 9.57% of that (10.28µW) of the conventional SRAM at a supply voltage (VDD) of 1.0V. The data hold margin of the developed SRAM is 0.1839V and that of the conventional SRAM is 0.343V at the supply voltage of 1.0V. An area overhead of the SVL circuit is only 1.383% of the conventional SRAM.

  • Self-Dual Cyclic Codes over Z4[u]/<u2-1> and Their Applications of Z4-Self-Dual Codes Construction

    Yun GAO   Jian GAO  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:10
      Page(s):
    1724-1729

    In this paper, we study self-dual cyclic codes of length n over the ring R=Z4[u]/, where n is an odd positive integer. We define a new Gray map φ from R to Z42. It is a bijective map and maintains the self-duality. Furthermore, we give the structures of the generators of cyclic codes and self-dual cyclic codes of odd length n over the ring R. As an application, some self-dual codes of length 2n over Z4 are obtained.

  • Nash Equilibria in Combinatorial Auctions with Item Bidding and Subadditive Symmetric Valuations

    Hiroyuki UMEDA  Takao ASANO  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1324-1333

    We discuss Nash equilibria in combinatorial auctions with item bidding. Specifically, we give a characterization for the existence of a Nash equilibrium in a combinatorial auction with item bidding when valuations by n bidders satisfy symmetric and subadditive properties. By this characterization, we can obtain an algorithm for deciding whether a Nash equilibrium exists in such a combinatorial auction.

  • From Easy to Difficult: A Self-Paced Multi-Task Joint Sparse Representation Method

    Lihua GUO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/16
      Vol:
    E101-D No:8
      Page(s):
    2115-2122

    Multi-task joint sparse representation (MTJSR) is one kind of efficient multi-task learning (MTL) method for solving different problems together using a shared sparse representation. Based on the learning mechanism in human, which is a self-paced learning by gradually training the tasks from easy to difficult, I apply this mechanism into MTJSR, and propose a multi-task joint sparse representation with self-paced learning (MTJSR-SP) algorithm. In MTJSR-SP, the self-paced learning mechanism is considered as a regularizer of optimization function, and an iterative optimization is applied to solve it. Comparing with the traditional MTL methods, MTJSR-SP has more robustness to the noise and outliers. The experimental results on some datasets, i.e. two synthesized datasets, four datasets from UCI machine learning repository, an oxford flower dataset and a Caltech-256 image categorization dataset, are used to validate the efficiency of MTJSR-SP.

  • Improved Wolf Pack Algorithm Based on Differential Evolution Elite Set

    Xiayang CHEN  Chaojing TANG  Jian WANG  Lei ZHANG  Qingkun MENG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2018/03/30
      Vol:
    E101-D No:7
      Page(s):
    1946-1949

    Although Wolf Pack Algorithm (WPA) is a novel optimal algorithm with good performance, there is still room for improvement with respect to its convergence. In order to speed up its convergence and strengthen the search ability, we improve WPA with the Differential Evolution (DE) elite set strategy. The new proposed algorithm is called the WPADEES for short. WPADEES is faster than WPA in convergence, and it has a more feasible adaptability for various optimizations. Six standard benchmark functions are applied to verify the effects of these improvements. Our experiments show that the performance of WPADEES is superior to the standard WPA and other intelligence optimal algorithms, such as GA, DE, PSO, and ABC, in several situations.

  • Learners' Self Checking and Its Effectiveness in Conceptual Data Modeling Exercises

    Takafumi TANAKA  Hiroaki HASHIURA  Atsuo HAZEYAMA  Seiichi KOMIYA  Yuki HIRAI  Keiichi KANEKO  

     
    PAPER

      Pubricized:
    2018/04/20
      Vol:
    E101-D No:7
      Page(s):
    1801-1810

    Conceptual data modeling is an important activity in database design. However, it is difficult for novice learners to master its skills. In the conceptual data modeling, learners are required to detect and correct errors of their artifacts by themselves because modeling tools do not assist these activities. We call such activities self checking, which is also an important process. However, the previous research did not focus on it and/or the data collection of self checks. The data collection of self checks is difficult because self checking is an internal activity and self checks are not usually expressed. Therefore, we developed a method to help learners express their self checks by reflecting on their artifact making processes. In addition, we developed a system, KIfU3, which implements this method. We conducted an evaluation experiment and showed the effectiveness of the method. From the experimental results, we found out that (1) the novice learners conduct self checks during their conceptual data modeling tasks; (2) it is difficult for them to detect errors in their artifacts; (3) they cannot necessarily correct the errors even if they could identify them; and (4) there is no relationship between the numbers of self checks by the learners and the quality of their artifacts.

  • Estimating the Quality of Fractal Compressed Images Using Lacunarity

    Megumi TAKEZAWA  Hirofumi SANADA  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER

      Vol:
    E101-A No:6
      Page(s):
    900-903

    In this paper, we propose a highly accurate method for estimating the quality of images compressed using fractal image compression. Using an iterated function system, fractal image compression compresses images by exploiting their self-similarity, thereby achieving high levels of performance; however, we cannot always use fractal image compression as a standard compression technique because some compressed images are of low quality. Generally, sufficient time is required for encoding and decoding an image before it can be determined whether the compressed image is of low quality or not. Therefore, in our previous study, we proposed a method to estimate the quality of images compressed using fractal image compression. Our previous method estimated the quality using image features of a given image without actually encoding and decoding the image, thereby providing an estimate rather quickly; however, estimation accuracy was not entirely sufficient. Therefore, in this paper, we extend our previously proposed method for improving estimation accuracy. Our improved method adopts a new image feature, namely lacunarity. Results of simulation showed that the proposed method achieves higher levels of accuracy than those of our previous method.

  • Digital Self-Interference Cancellation for LTE-Compatible In-Band Full-Duplex Systems

    Changyong SHIN  Jiho HAN  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:5
      Page(s):
    822-830

    In this paper, we present self-interference (SI) cancellation techniques in the digital domain for in-band full-duplex systems employing orthogonal frequency division multiple access (OFDMA) in the downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) in the uplink (UL), as in the long-term evolution (LTE) system. The proposed techniques use UL subcarrier nulling to accurately estimate SI channels without any UL interference. In addition, by exploiting the structures of the transmitter imperfection and the known or estimated parameters associated with the imperfection, the techniques can further improve the accuracy of SI channel estimation. We also analytically derive the lower bound of the mean square error (MSE) performance and the upper bound of the signal-to-interference-plus-noise ratio (SINR) performance for the techniques, and show that the performance of the techniques are close to the bounds. Furthermore, by utilizing the SI channel estimates and the nonlinear signal components of the SI caused by the imperfection to effectively eliminate the SI, the proposed techniques can achieve SINR performance very close to the one in perfect SI cancellation. Finally, because the SI channel estimation of the proposed techniques is performed in the time domain, the techniques do not require symbol time alignment between SI and UL symbols.

  • A Dynamic Latched Comparator Using Area-Efficient Stochastic Offset Voltage Detection Technique

    Takayuki OKAZAWA  Ippei AKITA  

     
    PAPER-Integrated Electronics

      Vol:
    E101-C No:5
      Page(s):
    396-403

    This paper presents a self-calibrating dynamic latched comparator with a stochastic offset voltage detector that can be realized by using simple digital circuitry. An offset voltage of the comparator is compensated by using a statistical calibration scheme, and the offset voltage detector uses the uncertainty in the comparator output. Thanks to the simple offset detection technique, all the calibration circuitry can be synthesized using only standard logic cells. This paper also gives a design methodology that can provide the optimal design parameters for the detector on the basis of fundamental statistics, and the correctness of the design methodology was statistically validated through measurement. The proposed self-calibrating comparator system was fabricated in a 180 nm 1P6M CMOS process. The prototype achieved a 38 times improvement in the three-sigma of the offset voltage from 6.01 mV to 158 µV.

  • Self-Paced Learning with Statistics Uncertainty Prior

    Lihua GUO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/12/13
      Vol:
    E101-D No:3
      Page(s):
    812-816

    Self-paced learning (SPL) gradually trains the data from easy to hard, and includes more data into the training process in a self-paced manner. The advantage of SPL is that it has an ability to avoid bad local minima, and the system can improve the generalization performance. However, SPL's system needs an expert to judge the complexity of data at the beginning of training. Generally, this expert does not exist in the beginning, and is learned by gradually training the samples. Based on this consideration, we add an uncertainty of complexity judgment into SPL's system, and propose a self-paced learning with uncertainty prior (SPUP). For efficiently solving our system optimization function, an iterative optimization and statistical simulated annealing method are introduced. The final experimental results indicate that our SPUP has more robustness to the outlier and achieves higher accuracy and less error than SPL.

  • Half-Height-Pin Gap Waveguide Technology and Its Applications in High Gain Planar Array Antennas at Millimeter Wave Frequency Open Access

    Jian YANG  Fangfang FAN  Parastoo TAGHIKHANI  Abbas VOSOOGH  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    285-292

    This paper presents a new form of gap waveguide technology - the half-height-pin gap waveguide. The gap waveguide technology is a new transmission line technology introduced recently, which makes use of the stopband of wave propagation created by a pair of parallel plates, one PEC (perfect electric conductor) and one PMC (perfect magnetic conductor), with an air gap in between less than a quarter of the wavelength at operation frequency. Applying this PEC/PMC gap plate structure to ridged waveguides, rectangular hollow waveguides and microstrip lines, we can have the ridged gap waveguides, groove gap waveguides and inverted gap waveguide microstrip lines, respectively, without requiring a conductive or galvanic contact between the upper PEC and the lower PMC plates. This contactless property of the gap waveguide technology relaxes significantly the manufacturing requirements for devices and antennas at millimeter wave frequencies. PMC material does not exist in nature, and an artificial PMC boundary can be made by such as periodic pin array with the pin length about a quarter wavelength. However, the quarter-wavelength pins, referred to as the full-height pins, are often too long for manufacturing. In order to overcome this difficulty, a new half-height-pin gap waveguide is introduced. The working principles and Q factors for the half-height-pin gap waveguides are described, analyzed and verified with measurements in this paper. It is concluded that half-height-pin gap waveguides have similar Q factors and operation bandwidth to the full-height-pin gap waveguides. As an example of the applications, a high gain planar array antenna at V band by using the half-height-pin gap waveguide has been designed and is presented in the paper with a good reflection coefficient and high aperture efficiency.

81-100hit(726hit)