The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LF(726hit)

161-180hit(726hit)

  • Wireless Self-Powered Urinary Incontinence Sensor for Disposable Diapers

    Ami TANAKA  Takakuni DOUSEKI  

     
    PAPER

      Vol:
    E97-B No:3
      Page(s):
    587-593

    A self-powered urinary-incontinence sensor with a flexible wire-type urine-activated battery has been developed as an application for wireless biosensor networks. It is disposable and can be embedded in a diaper. The battery consists of two long film-type line electrodes printed on a flexible plastic sheet that abuts the absorbent material of the diaper. It conforms to the shape of the diaper when the diaper is worn. The stress produced by the curvature of the diaper presses the electrodes firmly against the diaper material, providing greater contact with any urine present. Thus, the battery generates more power than when it is flat, as in an unworn diaper. To verify the effectiveness of the battery, we fabricated a battery and a prototype sensor, which consists of an intermittent-power-supply circuit and a wireless transmitter, and embedded the battery in a diaper. The anode of the battery also acts as a wide ground plane for the antenna of the wireless transmitter, which radiates a large amount of power. When 80cc of urine is poured onto the diaper, the battery outputs a voltage of around 1V, which allows the sensor to transmit an ID signal over a distance of 5m every 40 seconds or so.

  • Self-Triggered Predictive Control with Time-Dependent Activation Costs of Mixed Logical Dynamical Systems

    Shogo NAKAO  Toshimitsu USHIO  

     
    PAPER

      Vol:
    E97-A No:2
      Page(s):
    476-483

    Many controllers are implemented on digital platforms as periodic control tasks. But, in embedded systems, an amount of resources are limited and the reduction of resource utilization of the control task is an important issue. Recently, much attention has been paid to a self-triggered controller, which updates control inputs aperiodically. A control task by which the self-triggered controller is implemented skips the release of jobs if the degradation of control performances by the skipping can be allowed. Each job computes not only the updated control inputs but also the next update instant and the control task is in the sleep state until the instant. Thus the resource utilization is reduced. In this paper, we consider self-triggered predictive control (stPC) of mixed logical dynamical (MLD) systems. We introduce a binary variable which determines whether the control inputs are updated or not. Then, we formulate an stPC problem of mixed logical dynamical systems, where activation costs are time-dependent to represent the preference of activations of the control task. Both the control inputs and the next update instant are computed by solving a mixed integer programming problem. The proposed stPC can reduce the number of updates with guaranteeing stability of the controlled system.

  • A New Delay Distribution Model with a Half Triangular Distribution for Statistical Static Timing Analysis

    Shuji TSUKIYAMA  Masahiro FUKUI  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E96-A No:12
      Page(s):
    2542-2552

    The long-term degradation due to aging such as NBTI (Negative Bias Temperature Instability) is a hot issue in the current circuit design using nanometer process technologies, since it causes a delay fault in the field. In order to resolve the problem, we must estimate delay variation caused by long-term degradation in design stage, but over estimation must be avoided so as to make timing design easier. If we can treat such a variation statistically, and if we treat it together with delay variations due to process variability, then we can reduce over margin in timing design. Moreover, such a statistical static timing analyzer treating process variability and long-term degradation together will help us to select an appropriate set of paths for which field testing are conducted to detect delay faults. In this paper, we propose a new delay model with a half triangular distribution, which is introduced for handling a random factor with unknown distribution such as long term degradation. Then, we show an algorithm for finding the statistical maximum, which is one of key operations in statistical static timing analysis. We also show a few experimental results demonstrating the effect of the proposed model and algorithm.

  • An Investigation on Self-Resonant and Capacitor-Loaded Helical Antennas for Coupled-Resonant Wireless Power Transfer

    Hiroshi HIRAYAMA  Tomohiro AMANO  Nobuyoshi KIKUMA  Kunio SAKAKIBARA  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2431-2439

    Self-resonant helical antenna and capacitor-loaded helical antenna of the same dimension for coupled-resonant wireless power transfer is discussed. At first, fundamental difference of the self-resonant and the capacitor-loaded antenna is demonstrated by calculating electric- and magnetic-coupling coefficient. Next, performance of the helical antennas are discussed from viewpoints of 1) transmission efficiency, 2) undesired emission, 3) near-field leakage, 4) effect of human body and 5) effect of conductivity. We have found that the self-resonant helical antenna has an advantage in low transmission loss due to a conductivity of wire. On the other hand, the capacitor-loaded antenna has an advantage in low emission, long transfer distance, and low influence of resonant frequency from human body. This is because both electric-field coupling and magnetic-field coupling are dominant for the self-resonant antenna while only magnetic-field coupling is dominant in the capacitor-loaded antenna.

  • Slack Space Recycling: Delaying On-Demand Cleaning in LFS for Performance and Endurance

    Yongseok OH  Jongmoo CHOI  Donghee LEE  Sam H. NOH  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:9
      Page(s):
    2075-2086

    The Log-structured File System (LFS) transforms random writes to a huge sequential one to provide superior write performance on storage devices. However, LFS inherently suffers from overhead incurred by cleaning segments. Specifically, when file system utilization is high and the system is busy, write performance of LFS degenerates significantly due to high cleaning cost. Also, in the newer flash memory based SSD storage devices, cleaning leads to reduced SSD lifetime as it incurs more writes. In this paper, we propose an enhancement to the original LFS to alleviate the performance degeneration due to cleaning when the system is busy. The new scheme, which we call Slack Space Recycling (SSR), allows LFS to delay on-demand cleaning during busy hours such that cleaning may be done when the load is much lighter. Specifically, it writes modified data directly to invalid areas (slack space) of used segments instead of cleaning on-demand, pushing back cleaning for later. SSR also has the added benefit of increasing the lifetime of the now popular SSD storage devices. We implement the new SSR-LFS file system in Linux and perform a large set of experiments. The results of these experiments show that the SSR scheme significantly improves performance of LFS for a wide range of storage utilization settings and that the lifetime of SSDs is extended considerably.

  • Architecture of an Asynchronous FPGA for Handshake-Component-Based Design

    Yoshiya KOMATSU  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-Architecture

      Vol:
    E96-D No:8
      Page(s):
    1632-1644

    This paper presents a novel architecture of an asynchronous FPGA for handshake-component-based design. The handshake-component-based design is suitable for large-scale, complex asynchronous circuit because of its understandability. This paper proposes an area-efficient architecture of an FPGA that is suitable for handshake-component-based asynchronous circuit. Moreover, the Four-Phase Dual-Rail encoding is employed to construct circuits robust to delay variation because the data paths are programmable in FPGA. The FPGA based on the proposed architecture is implemented in a 65 nm process. Its evaluation results show that the proposed FPGA can implement handshake components efficiently.

  • A Control Method of Dynamic Selfish Routing Based on a State-Dependent Tax

    Takafumi KANAZAWA  Takurou MISAKA  Toshimitsu USHIO  

     
    PAPER-Concurrent Systems

      Vol:
    E96-A No:8
      Page(s):
    1794-1802

    A selfish routing game is a simple model of selfish behaviors in networks. It is called that Braess's paradox occurs in the selfish routing game if an equilibrium flow achieved by players' selfish behaviors is not the optimal minimum latency flow. In order to make the minimum latency flow a Nash equilibrium, a marginal cost tax has been proposed. Braess graphs have also been proposed to discuss Braess's paradox. In a large population of selfish players, conflicts between purposes of each player and the population causes social dilemmas. In game theory, to resolve the social dilemmas, a capitation tax and/or a subsidy has been introduced, and players' dynamical behaviors have been formulated by replicator dynamics. In this paper, we formulate replicator dynamics in the Braess graphs and investigate stability of the minimum latency flow with and without the marginal cost tax. An additional latency caused by the marginal cost tax is also shown. To resolve the problem of the additional latency, we extend the capitation tax and the subsidy to a state-dependent tax and apply it to the stabilization problem of the minimum latency flow.

  • Managing Disconnected Mobile Nodes in a Delay Tolerant Network with HALF Routing Protocol

    Anika AZIZ  Md. Enamul HAQUE  Cristian BORCEA  Yasser Kamal HASSAN  Shigeki YAMADA  

     
    PAPER

      Vol:
    E96-B No:7
      Page(s):
    1691-1705

    Delay and Disruption Tolerant Networks (DTN) can provide an underlying base to support mobility environments. DTN is equipped with advanced features such as custody transfer and hop by hop routing which can tackle the frequent disconnections of mobile devices by buffering bundles and dynamically making hop-by-hop routing decisions under intermittent connectivity environment. In this paper, we have proposed a DTN routing protocol HALF (Handoff-based And Limited Flooding) which can manage and improve performance of disrupted and challenging communication between mobile nodes in the presence of an infrastructure network consisting of fixed interconnected nodes (routers). HALF makes use of the general handoff mechanisms intended for the IP network, in a DTN way and also integrates a limited flooding technique to it. Simulation results show that HALF attains better performance than other existing DTN routing protocols under diverse network conditions. As the traffic intensity changes from low to high, delivery ratio of other DTN routing protocols decreased by 50% to 75% whereas in HALF such ratio is reduced by less than 5%. HALF can deliver about 3 times more messages than the other protocols when the disrupted network has to deal with larger size of messages. If we calculate the overhead ratio in terms of 'how many extra (successful) transfer' is needed for each delivery, HALF gives less than 20% overhead ratio while providing a good delivery ratio.

  • Low Complexity Image/Video Super Resolution Using Edge and Nonlocal Self-Similarity Constraint

    Zongliang GAN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E96-D No:7
      Page(s):
    1569-1572

    In this letter, we present a fast image/video super resolution framework using edge and nonlocal constraint. The proposed method has three steps. First, we improve the initial estimation using content-adaptive bilateral filtering to strengthen edge. Second, the high resolution image is estimated by using classical back projection method. Third, we use joint content-adaptive nonlocal means filtering to get the final result, and self-similarity structures are obtained by the low resolution image. Furthermore, content-adaptive filtering and fast self-similarity search strategy can effectively reduce computation complexity. The experimental results show the proposed method has good performance with low complexity and can be used for real-time environment.

  • Self-Cascode MOSFET with a Self-Biased Body Effect for Ultra-Low-Power Voltage Reference Generator

    Hao ZHANG  Mengshu HUANG  Yimeng ZHANG  Tsutomu YOSHIHARA  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    859-866

    This paper proposes a novel approach for implementing an ultra-low-power voltage reference using the structure of self-cascode MOSFET, operating in the subthreshold region with a self-biased body effect. The difference between the two gate-source voltages in the structure enables the voltage reference circuit to produce a low output voltage below the threshold voltage. The circuit is designed with only MOSFETs and fabricated in standard 0.18-µm CMOS technology. Measurements show that the reference voltage is about 107.5 mV, and the temperature coefficient is about 40 ppm/, at a range from -20 to 80. The voltage line sensitivity is 0.017%/V. The minimum supply voltage is 0.85 V, and the supply current is approximately 24 nA at 80. The occupied chip area is around 0.028 mm2.

  • Mobility Performance Enhancements Based on Radio Link Quality for LTE-Advanced Heterogeneous Networks

    Yuefeng PENG  Wei YANG  Candy YIU  Yujian ZHANG  Hongwen YANG  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1348-1357

    Heterogeneous networks (HetNets) can provide higher capacity and user throughput than homogeneous networks in Long Term Evolution (LTE)-Advanced systems. However, because of increased interference from neighboring cells and the characteristics of the embedded small cells, handover performance is impacted adversely, especially when the user equipment (UE) moves at medium or high speeds. In this paper, to improve mobility performance, we propose two schemes, i.e., 1) using wideband signal-to-interference noise ratio (SINR) as the handover metric and 2) emergency attaching. The schemes can enhance mobility performance since handovers are performed based on the quality of the radio link. Importantly, the two schemes compliment rather than contradict each other. System-level simulations show that both the individual proposed schemes and the joint schemes can improve mobility performance significantly.

  • Noise Suppression Methods Using Spiral with PGS in PCB

    Tong-Ho CHUNG  Jong-Gwan YOOK  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E96-C No:5
      Page(s):
    752-754

    In this paper, several spiral inductors with various ground clearance structures and turns were investigated to achieve noise suppression up to the fourth harmonic (3.2 GHz) regime of DDR3-1600. Their performances were characterized in terms of their capability to effectively suppress simultaneous switching noise (SSN) in the frequency region of interest. For a wider noise suppression bandwidth, a spiral inductor with large ground clearance, which provides a high self resonance frequency (SRF) as well as high inductances, was implemented. The proposed spiral inductor exhibited good noise suppression characteristics in the frequency domain and achieved 50% voltage fluctuation reduction in the time domain, compared to the identical 4-turn spiral without pattern ground structure.

  • Self-Triggered Model Predictive Control with Delay Compensation for Networked Control Systems

    Koichi KOBAYASHI  Kunihiko HIRAISHI  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    861-868

    Self-triggered control is a control method that the control input and the sampling period are computed simultaneously in sampled-data control systems, and is studied in the field of networked control systems. In this paper, a new approach for self-triggered control is proposed based on the model predictive control (MPC) method. First, self-triggered MPC with delay compensation in which the delay-compensation input is introduced is newly formulated. Next, in order to efficiently solve this MPC problem, the optimal control problem with horizon one is formulated, and an approximate solution method is derived. Finally, the effectiveness of the proposed approach is shown by a numerical example.

  • Self-Similarities in Difference Images: A New Cue for Single-Person Oriented Action Recognition

    Guoliang LU  Mineichi KUDO  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:5
      Page(s):
    1238-1242

    Temporal Self-Similarity Matrix (SSM) based action recognition is one of the important approaches of single-person oriented action analysis in computer vision. In this study, we propose a new kind of SSM and a fast computation method. The computation method does not require time-consuming pre-processing to find bounding boxes of the human body, instead it processes difference images to obtain action patterns which can be done very quickly. The proposed SSM is experimentally confirmed to have high power/capacity to achieve a better classification performance than four typical kinds of SSMs.

  • Self Synchronous Circuits for Robust Operation in Low Voltage and Soft Error Prone Environments

    Benjamin DEVLIN  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    518-527

    In this paper we show that self synchronous circuits can provide robust operation in both soft error prone and low voltage operating environments. Self synchronous circuits are shown to be self checking, where a soft error will either cause a detectable error or halt operation of the circuit. A watchdog circuit is proposed to autonomously detect dual-rail '11' errors and prevent propagation, with measurements in 65 nm CMOS showing seamless operation from 1.6 V to 0.37 V. Compared to a system without the watchdog circuit size and energy-per-operation is increased 6.9% and 16% respectively, while error tolerance to noise is improved 83% and 40% at 1.2 V and 0.4 V respectively. A circuit that uses the dual-pipeline circuit style as redundancy against permanent faults is also presented and 40 nm CMOS measurement results shows correct operation with throughput of 1.2 GHz and 810 MHz at 1.1 V before and after disabling a faulty pipeline stage respectively.

  • Electrostatic Control of Artificial Cell Membrane Spreading by Tuning the Thickness of an Electric Double Layer in a Nanogap

    Yoshiaki KASHIMURA  Kazuaki FURUKAWA  Keiichi TORIMITSU  

     
    PAPER

      Vol:
    E96-C No:3
      Page(s):
    344-347

    When we apply a voltage to a supported lipid bilayer self-spreading through a nanometer-scale gap (nanogap), the effects can be divided into two types. One is that there is no voltage-dependent change in the self-spreading behavior. Namely, the lipid bilayer passes through a nanogap without any stagnation. The other reveals that the self-spreading of a lipid bilayer can be controlled by an electric field modulation between nanogap electrodes. As a mechanism for these phenomena, we have proposed an electrostatic trapping model, in which the relationship between the thickness of an electric double layer and the nanogap spacing plays a crucial role. Here, to confirm the validity of this mechanism, we investigated the ionic concentration dependence of an electrolyte solution on the self-spreading behavior, which enabled us to tune the thickness of the electric double layer precisely. The result exhibited a certain threshold for controlling the self-spreading behavior. We also approximated the electric potential in the nanogap by using the Debye-Huckel equation. Our calculation result was in good agreement with the ionic concentration dependence experiments, suggesting the validity of our proposed mechanism. The results described in this work provide useful information regarding the realization of nanobio devices and the fundamental study of nanoelectronics.

  • On the Length-Decreasing Self-Reducibility and the Many-One-Like Reducibilities for Partial Multivalued Functions

    Ji-Won HUH  Shuji ISOBE  Eisuke KOIZUMI  Hiroki SHIZUYA  

     
    PAPER

      Vol:
    E96-D No:3
      Page(s):
    465-471

    In this paper, we investigate a relationship between the length-decreasing self-reducibility and the many-one-like reducibilities for partial multivalued functions. We show that if any parsimonious (many-one or metric many-one) complete function for NPMV (or NPMVg) is length-decreasing self-reducible, then any function in NPMV (or NPMVg) has a polynomial-time computable refinement. This result implies that there exists an NPMV (or NPMVg)-complete function which is not length-decreasing self-reducible unless P = NP.

  • 100-GS/s 5-Bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion

    Takema SATOH  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    223-226

    We report a trial of 100-GS/s optical quantization with 5-bit resolution using soliton self-frequency shift (SSFS) and spectral compression. We confirm that 100-GS/s 5-bit optical quantization is realized to quantize a 5.0-GHz sinusoid electrical signal in simulation. In order to experimentally verify the possibility of 100-GS/s 5-bit optical quantization, we execute 5-bit optical quantization by using two sampled signals with 10-ps intervals.

  • A Theoretical Framework for Constructing Matching Algorithms Secure against Wolf Attack

    Manabu INUMA  Akira OTSUKA  Hideki IMAI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E96-D No:2
      Page(s):
    357-364

    The security of biometric authentication systems against impersonation attack is usually evaluated by the false accept rate, FAR. The false accept rate FAR is a metric for zero-effort impersonation attack assuming that the attacker attempts to impersonate a user by presenting his own biometric sample to the system. However, when the attacker has some information about algorithms in the biometric authentication system, he might be able to find a “strange” sample (called a wolf) which shows high similarity to many templates and attempt to impersonate a user by presenting a wolf. Une, Otsuka, Imai [22],[23] formulated such a stronger impersonation attack (called it wolf attack), defined a new security metric (called wolf attack probability, WAP), and showed that WAP is extremely higher than FAR in a fingerprint-minutiae matching algorithm proposed by Ratha et al. [19] and in a finger-vein-patterns matching algorithm proposed by Miura et al. [15]. Previously, we constructed secure matching algorithms based on a feature-dependent threshold approach [8] and showed that if the score distribution is perfectly estimated for each input feature data, then the proposed algorithms can lower WAP to a small value almost the same as FAR. In this paper, in addition to reintroducing the results of our previous work [8], we show that the proposed matching algorithm can keep the false reject rate (FRR) low enough without degrading security, if the score distribution is normal for each feature data.

  • The Properties of the FCSR-Based Self-Shrinking Sequence

    Huijuan WANG  Qiaoyan WEN  Jie ZHANG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E96-A No:2
      Page(s):
    626-634

    In the construction of a no-linear key-stream generator, self-shrinking is an established way of getting the binary pseudo-random periodic sequences in cryptography design. In this paper, using the theoretical analysis, we mainly study the self-shrinking sequence based on the l-sequence, and the theoretical results reflect its good cryptography properties accurately, such that it has the last period T = pe(p-1)/2 when T is an odd number, and the expected value of its autocorrelation belongs to {0,1/T and the variance is O(T/ln4T). Furthermore, we find that the 2-adic complexity of the self-shrinking sequence based on the l-sequence is large enough to resist the Rational Approximation attack.

161-180hit(726hit)