Shota SAITO Toshiyasu MATSUSHIMA
This letter deals with the Slepian-Wolf coding problem for general sources. The second-order achievable rate region is derived using quantity which is related to the smooth max-entropy and the conditional smooth max-entropy. Moreover, we show the relationship of the functions which characterize the second-order achievable rate region in our study and previous study.
Keita KOBAYASHI Hiroyuki TSUJI Tomoaki KIMURA
In this paper, we propose a digital image enlargement method based on a fuzzy technique that improves half-pixel generation, especially for convex and concave signals. The proposed method is a modified version of the image enlargement scheme previously proposed by the authors, which achieves accurate half-pixel interpolation and enlarges the original image by convolution with the Lanczos function. However, the method causes impulse-like artifacts in the enlarged image. In this paper, therefore, we introduce a fuzzy set and fuzzy rule for generating half-pixels to improve the interpolation of convex and concave signals. Experimental results demonstrate that, in terms of image quality, the proposed method shows superior performance compared to bicubic interpolation and our previous method.
Quan MIAO Chenbo SHI Long MENG Guang CHENG
This paper proposes an on-line rigid object tracking framework via discriminative object appearance modeling and learning. Strong classifiers are combined with 2D scale-rotation invariant local features to treat tracking as a keypoint matching problem. For on-line boosting, we correspond a Gaussian mixture model (GMM) to each weak classifier and propose a GMM-based classifying mechanism. Meanwhile, self-organizing theory is applied to perform automatic clustering for sequential updating. Benefiting from the invariance of the SURF feature and the proposed on-line classifying technique, we can easily find reliable matching pairs and thus perform accurate and stable tracking. Experiments show that the proposed method achieves better performance than previously reported trackers.
Tian CHEN Dandan SHEN Xin YI Huaguo LIANG Xiaoqing WEN Wei WANG
Linear feedback shift register (LFSR) reseeding is an effective method for test data reduction. However, the test patterns generated by LFSR reseeding generally have high toggle rate and thus cause high test power. Therefore, it is feasible to fill X bits in deterministic test cubes with 0 or 1 properly before encoding the seed to reduce toggle rate. However, X-filling will increase the number of specified bits, thus increase the difficulty of seed encoding, what's more, the size of LFSR will increase as well. This paper presents a test frame which takes into consideration both compression ratio and power consumption simultaneously. In the first stage, the proposed reseeding-oriented X-filling proceeds for shift power (shift filling) and capture power (capture filling) reduction. Then, encode the filled test cubes using the proposed Compatible Block Code (CBC). The CBC can X-ize specified bits, namely turning specified bits into X bits, and can resolve the conflict between low-power filling and seed encoding. Experiments performed on ISCAS'89 benchmark circuits show that our scheme attains a compression ratio of 94.1% and reduces capture power by at least 15% and scan-in power by more than 79.5%.
Mariusz GŁĄBOWSKI Sławomir HANCZEWSKI Maciej STASIAK
This article describes an approximate model of a group of cells in the wireless 4G network with implemented load balancing mechanism. An appropriately modified model of Erlang's Ideal Grading is used to model this group of cells. The model makes it possible to take into account limited availability of resources of individual cells to multi-rate elastic and adaptive traffic streams generated by Erlang and Engset sources. The developed solution allows the basic traffic characteristics in the considered system to be determined, i.e. the occupancy distribution and the blocking probability. Because of the approximate nature of the proposed model, the results obtained based on the model were compared with the results of a digital simulation. The present study validates the adopted assumptions of the proposed model.
Jun-Sang YOO Ji-Hoon CHOI Kang-Sun CHOI Dae-Yeol LEE Hui-Yong KIM Jong-Ok KIM
In the self-similarity super resolution (SR) approach, similar examples are searched across down-scales in the image pyramid, and the computations of searching similar examples are very heavy. This makes it difficult to work in a real-time way under common software implementation. Therefore, the search process should be further accelerated at an algorithm level. Cauchy-Schwarz inequality has been used previously for fast vector quantization (VQ) encoding. The candidate patches in the search region of SR are analogous to the code-words in the VQ, and Cauchy-Schwarz inequality is exploited to exclude implausible candidate patches early. Consequently, significant acceleration of the similar patch search process is achieved. The proposed method can easily make an optimal trade-off between running speed and visual quality by appropriately configuring the bypass-threshold.
Jinglei LI Qinghai YANG Kyung Sup KWAK
In this paper, we investigate multi-service forwarding in selfish wireless networks (SeWN) with selfish relay nodes (RN). The RN's node-selfishness is characterized from the perspectives of its residual energy and the incentive paid by the source, by which the degree of intrinsic selfishness (DeIS) and the degree of extrinsic selfishness (DeES) are defined. Meanwhile, a framework of the node-selfishness management is conceived to extract the RNs' node-selfishness information (NSI). Based on the RN's NSI, the expected energy cost and expected service profit are determined for analyzing the effect of the RN's node-selfishness on the multi-service forwarding. Moreover, the optimal incentive paid by the source is obtained for minimizing its cost and, at the same time, effectively stimulating the multi-service delivery. Simulation validate our analysis.
Let Fq be a finite field of cardinality q, R=Fq[u]/
In this paper, a self optimization beamforming null control (SOBNC) scheme is proposed. There is a need of maintaining signal to interference plus noise ratio (SINR) threshold to control modulation and coding schemes (MCS) in recent technologies like Wi-Fi, Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A). Selection of MCS depends on the SINR threshold that allows maintaining key performance index (KPI) like block error rate (BLER), bit error rate (BER) and throughput at certain level. The SOBNC is used to control the antenna pattern for SINR estimation and improve the SINR performance of the wireless communication systems. The nulling comes with a price; if wider nulls are introduced, i.e. more number of nulls are used, the 3dB beam-width and peak side lobe level (SLL) in antenna pattern changes critically. This paper proposes a method which automatically controls the number of nulls in the antenna pattern as per the changing environment based on adaptive-network based fuzzy interference system (ANFIS) to maintain output SINR level higher or equal to the required threshold. Finally, simulation results show a performance superiority of the proposed SOBNC compared with minimum mean square error (MMSE) based adaptive nulling control algorithm and conventional fixed null scheme.
Takuma YASUDA Nobuhiko OZAKI Hiroshi SHIBATA Shunsuke OHKOUCHI Naoki IKEDA Hirotaka OHSATO Eiichiro WATANABE Yoshimasa SUGIMOTO Richard A. HOGG
We developed an electrically driven near-infrared broadband light source based on self-assembled InAs quantum dots (QDs). By combining emissions from four InAs QD ensembles with controlled emission center wavelengths, electro-luminescence (EL) with a Gaussian-like spectral shape and approximately 85-nm bandwidth was obtained. The peak wavelength of the EL was blue-shifted from approximately 1230 to 1200 nm with increased injection current density (J). This was due to the state-filling effect: sequential filling of the discrete QD electron/hole states by supplied carriers from lower (ground state; GS) to higher (excited state; ES) energy states. The EL intensities of the ES and GS emissions exhibited different J dependence, also because of the state-filling effect. The point-spread function (PSF) deduced from the Fourier-transformed EL spectrum exhibited a peak without apparent side lobes. The half width at half maximum of the PSF was 6.5 µm, which corresponds to the estimated axial resolution of the optical coherence tomography (OCT) image obtained with this light source. These results demonstrate the effectiveness of the QD-based device for realizing noise-reduced high-resolution OCT.
Koichi KOBAYASHI Kunihiko HIRAISHI
Event-triggered and self-triggered control methods are an important control strategy in networked control systems. Event-triggered control is a method that the measured signal is sent to the controller (i.e., the control input is recomputed) only when a certain condition is satisfied. Self-triggered control is a method that the control input and the (non-uniform) sampling interval are computed simultaneously. In this paper, we propose new methods of event-triggered control and self-triggered control from the viewpoint of online optimization (i.e., model predictive control). In self-triggered control, the control input and the sampling interval are obtained by solving a pair of a quadratic programming (QP) problem and a mixed integer linear programming (MILP) problem. In event-triggered control, whether the control input is updated or not is determined by solving two QP problems. The effectiveness of the proposed methods is presented by numerical examples.
This work presents an approximate global optimization method for image halftone by fusing multi-scale information of the tree model. We employ Gaussian mixture model and hidden Markov tree to characterized the intra-scale clustering and inter-scale persistence properties of the detailed coefficients, respectively. The model of multiscale perceived error metric and the theory of scale-related perceived error metric are used to fuse the statistical distribution of the error metric of the scale of clustering and cross-scale persistence. An Energy function is then generated. Through energy minimization via graph cuts, we gain the halftone image. In the related experiment, we demonstrate the superior performance of this new algorithm when compared with several algorithms and quantitative evaluation.
Jeehoon LEE Minjoong RIM Kiseon KIM
An incremental relaying protocol is a promising scheme for preventing the inefficient use of resources in half-duplex cooperative relay networks. In particular, the incremental selection amplify-and-forward (ISAF) relaying scheme is a well-designed protocol under the condition that the source-to-destination (SD) link is static during the two transmission phases. However, from a practical viewpoint, the SD link is not static but varies with time, and thus the ISAF relaying scheme may not work well in the field. In this work, we first show that the outage performance of the ISAF relaying scheme may decrease when the SD link is not static during the two transmission phases. We then propose a modified version of the ISAF relaying scheme which overcomes such a limitation of the ISAF relaying scheme under time-varying environments. Finally, numerical and simulation results are provided to support our findings.
Majid DELSHAD Nasrin ASADI MADISEH Bahador FANI Mahmood AZARI
In this paper, a new single soft switched forward converter with a self driven synchronous rectification (SDSR) is introduced. In the proposed converter, a soft switching condition (ZCS turn on and ZVS turn off) is provided for the switch, by an auxiliary circuit without any extra switch. In additional, this auxiliary circuit does not impose high voltage or current stresses on the converter. Since the proposed converter uses SDSR to reduce conductive loss of output rectifier, the rectifier switches are switched under soft switching condition. So, the conductive and switching losses on the converter reduce considerably. Also, implementing control circuit of this converter is very simple, due to the self-driven method employed in driving synchronous rectification and the converter is controlled by pulse width modulation (PWM). The experimental results of the proposed converter are presented to confirm the theoretical analysis.
Tomotaka NAGASHIMA Makoto HASEGAWA Takuya MURAKAWA Tsuyoshi KONISHI
We investigate a quantization error improvement technique using a dual rail configuration for optical quantization. Our proposed optical quantization uses intensity-to-wavelength conversion based on soliton self-frequency shift and spectral compression based on self-phase modulation. However, some unfavorable input peak power regions exist due to stagnations of wavelength shift or distortions of spectral compression. These phenomena could induce a serious quantization error and degrade the effective number of bit (ENOB). In this work, we propose a quantization error improvement technique which can make up for the unfavorable input peak power regions. We experimentally verify the quantization error improvement effect by the proposed technique in 6 bit optical quantization. The estimated ENOB is improved from 5.35 bit to 5.66 bit. In addition, we examine the XPM influence between counter-propagating pulses at high sampling rate. Experimental results and numerical simulation show that the XPM influence is negligible under ∼40 GS/s conditions.
Hai Huy NGUYEN PHAM Shintaro HISATAKE Tadao NAGATSUMA
We demonstrate the characterization of a horn antenna in the full F-band (90 ∼ 140 GHz) based on far-field transformation from near-field electro-optic (EO) measurement. Our nonpolarimetric self-heterodyne EO sensing system enables us to simultaneously measure the spatial distribution of the amplitude and phase of the RF signal. Because free-running lasers are used to generate and detect the RF signal, our EO sensing system has wide frequency tunability. Owing to the stable and reliable amplitude and phase measurements with minimal field perturbation, the estimated far-field patterns agree well with those of the simulated results. We have evaluated the estimation errors of the 3-dB beamwidth and position of the first sidelobe. The largest standard error of the measurements was 1.1° for 3-dB beamwidth and 3.5° for the position of first sidelobe at frequency 90 GHz. Our EO sensing system can be used to characterize and evaluate terahertz antennas for indoor communication applications such as small-size slot array antennas.
Invention and development of the Yagi-Uda antenna in Tohoku University, Japan are described. Communication experiments in VHF and UHF frequency bands using transmitter and receiver developed in the same university as well as the Yagi-Uda antenna are also presented. Then, self-complementary antennas, which is the frequency independent antenna invented in Tohoku University are described. Analysis methods of large loop antennas is also presented.
Takeshi MITSUNAKA Kunihiko IIZUKA Minoru FUJISHIMA
In this paper, a 97-mW 8-phase CMOS voltage-controlled oscillator (VCO) and dividers covering the entire VCO oscillation range for a 134-GHz phase-locked loop (PLL) synthesizer are presented. The dividers have two injection-locked frequency dividers (ILFDs), one with and one without an inductor, and a pulse-swallowing counter with a differential dual-modulus prescaler. The VCO has a fundamental oscillation frequency range of 131.8 GHz to 134.3 GHz, achieved by controlling the back-gate voltage, which is also used to tune the locking range of divide-by-2 and divide-by-3 dividers. The ratio between the measured VCO oscillation frequencies and output frequencies of dividers is in good agreement with the target ratio. This indicates that the dividers covered the entire VCO oscillation range. We fabricated the VCO and dividers with a chip core area of 180 µm × 100 µm implemented in a 65-nm CMOS process. The total power consumption was 97 mW at a 1.2-V supply voltage.
Masaomi TSURU Kengo KAWASAKI Koji TSUTSUMI Eiji TANIGUCHI
An adaptively phase-shift controlled self-injection locked VCO is described. A self-injection locking technique is effective to reduce phase noise. However, a conventional self-injection locked VCO has drawbacks of discontinuous frequency sweep which means narrow bandwidth, and large variation of phase noise. Our proposed adaptively phase-shift controlled self-injection locked VCO overcomes these drawbacks by detecting phase-shift of the self-injection feedback and controlling the phase-shift depending on sweep of the oscillation frequency. This paper describes analysis of relationships between the discontinuity and feedback phase-shift of the self-injection locked VCO. In addition, a VCO-IC which includes a Ka-band VCO and a phase detector is designed and fabricated in 0.18um SiGe BiCMOS technology. Measurement results of the proposed self-injection locked VCO using the fabricated IC show the improvement to the drawbacks. In the proposed self-injection locked VCO, the oscillation frequency sweep is continuous and the phase noise variation is less than 5 dB.
We present a new framework for embedding holographic halftone watermarking data into images by fusion of scale-related wavelet coefficients. The halftone watermarking image is obtained by using error-diffusion method and converted into Fresnel hologram, which is considered to be the initial password. After encryption, a scrambled watermarking image through Arnold transform is embedded into the host image during the halftoning process. We characterize the multi-scale representation of the original image using the discrete wavelet transform. The boundary information of the target image is fused by correlation of wavelet coefficients across wavelet transform layers to increase the pixel resolution scale. We apply the inter-scale fusion method to gain fusion coefficient of the fine-scale, which takes into account both the detail of the image and approximate information. Using the proposed method, the watermarking information can be embedded into the host image with recovery against the halftoning operation. The experimental results show that the proposed approach provides security and robustness against JPEG compression and different attacks compared to previous alternatives.