Yuki MURAKAMI Qi-Wei GE Hiroshi MATSUNO
In our privious paper, we proposed an algorithm that determines delay times of a timed Petri net from the structural information of a signaling pathway, but Petri net structures containing cycles and inhibitory arcs were not considered. This paper provides conditions for cycle-contained Petri nets to have reasonable delay times. Furthermore, handling of inhibitory arcs are discussed in terms of the reaction rate of inhibitory interaction in signaling pathway, especially the conversion process of Petri net with inhibitory arc to the one without inhibitory arc is given.
Hideki KAWAGUCHI Kazunori MAEDA Shohei KODATE Yoshihiro ITO
Streak cameras are now widely used for measurements of ultra short phenomena, such as those in semi conductor luminescence and plasma gaseous discharge. To further improve the temporal resolution and carry out higher-dimensional measurements, it is necessary to understand the electron beam behavior in detail. Thus, numerical simulations play an important role in the analysis of the streak camera. The authors have been working on the development of a numerical simulation code that uses the finite difference method (FDM) for electric field analysis, the Runge-Kutta (R-K) method for charged particle motion determination, and the particle-in-cell (PIC) method for charge density calculation. However, the use of the PIC method leads to inaccuracy in the charge density calculation in cases of high-density electron beams. To improve the accuracy of the conventional analysis of the streak camera, we perform the boundary element (BE) analysis of the streak camera.
We deal with the scattering of a scalar plane wave by a half plane with a sinusoidally deformed edge from a straight edge by a physical optics approximation. The normal incidence of a plane wave to an edge is assumed. A contribution of an edge to the field integral is asymptotically evaluated and the basic properties of the scattering caused by the edge deformation is clarified. The scattering pattern has peaks at specific scattering angles, which agree with diffraction angles calculated by the well-known grating formula for normal incidence. Some numerical examples are shown and it is shown that the results are in good agreement with the results obtained by the GTD method for low angle incidence.
Self-encoded spread spectrum (SESS) derives its spreading codes from the random information source rather than using traditional pseudo-random codes. It has been shown that the memory in SESS modulated signals not only can deliver a 3 dB gain in additive white Gaussian noise (AWGN) channels, but also can be exploited to achieve time diversity and robust bit-error rate (BER) performance in fading channels. In this paper, we propose an extension to SESS, namely coded-sequence self-encoded spread spectrum (CS-SESS), and show that it can further improve the BER performance. We describe the CS-SESS scheme and present the theoretical analysis and simulation results for AWGN and fading channels. Iterative detector is developed to exploit the inherent temporal diversity of CS-SESS modulation. The simulation results show that it can achieve the expected 4.7 dB gain with a complexity that increases linearly with the spreading sequence length under AWGN. In Rayleigh fading channel, it can effectively mitigate the fading effects by exploiting the overall diversity gain. Chip interleaving is shown to yield a performance improvement of around 4.7 dB when compared to an chip interleaved direct sequence spread spectrum (DSSS) system.
Puripong SUTHISOPAPAN Kenta KASAI Anupap MEESOMBOON Virasit IMTAWIL Kohichi SAKANIWA
From an information-theoretic point of view, it is well known that the capacity of relay channels comprising of three terminals is much greater than that of two terminal direct channels especially for low SNR region. Previously invented relay coding strategies have not been designed to achieve this relaying gain occurring in the low SNR region. In this paper, we propose a new simple coding strategy for a relay channel with low SNR or, equivalently, for a very noisy relay channel. The multiplicative repetition is utilized to design this simple coding strategy. We claim that the proposed strategy is simple since the destination and the relay can decode with almost the same computational complexity by sharing the same structure of decoder. An appropriate static power allocation which yields the maximum throughput close to the optimal one in low SNRs is also suggested. Under practical constraints such as equal time-sharing etc., the asymptotic performance of this simple strategy is within 0.5 dB from the achievable rate of a relay channel. Furthermore, the performance at few thousand bits enjoys a relaying gain by approximately 1 dB.
Xiaobo ZHOU Xin HE Khoirul ANWAR Tad MATSUMOTO
In this paper, we reformulate the issue related to wireless mesh networks (WMNs) from the Chief Executive Officer (CEO) problem viewpoint, and provide a practical solution to a simple case of the problem. It is well known that the CEO problem is a theoretical basis for sensor networks. The problem investigated in this paper is described as follows: an originator broadcasts its binary information sequence to several forwarding nodes (relays) over Binary Symmetric Channels (BSC); the originator's information sequence suffers from independent random binary errors; at the forwarding nodes, they just further interleave, encode the received bit sequence, and then forward it, without making heavy efforts for correcting errors that may occur in the originator-relay links, to the final destination (FD) over Additive White Gaussian Noise (AWGN) channels. Hence, this strategy reduces the complexity of the relay significantly. A joint iterative decoding technique at the FD is proposed by utilizing the knowledge of the correlation due to the errors occurring in the link between the originator and forwarding nodes (referred to as intra-link). The bit-error-rate (BER) performances show that the originator's information can be reconstructed at the FD even by using a very simple coding scheme. We provide BER performance comparison between joint decoding and separate decoding strategies. The simulation results show that excellent performance can be achieved by the proposed system. Furthermore, extrinsic information transfer (EXIT) chart analysis is performed to investigate convergence property of the proposed technique, with the aim of, in part, optimizing the code rate at the originator.
Ya-Ting SHYU Ying-Zu LIN Rong-Sing CHU Guan-Ying HUANG Soon-Jyh CHANG
Real-time on-chip measurement of bit error rate (BER) for high-speed analog-to-digital converters (ADCs) does not only require expensive multi-port high-speed data acquisition equipment but also enormous post-processing. This paper proposes a low-cost built-in-self-test (BIST) circuit for high-speed ADC BER test. Conventionally, the calculation of BER requires a high-speed adder. The presented method takes the advantages of Gray coding and only needs simple logic circuits for BER evaluation. The prototype of the BIST circuit is fabricated along with a 5-bit high-speed flash ADC in a 90-nm CMOS process. The active area is only 90 µm 70 µm and the average power consumption is around 0.3 mW at 700 MS/s. The measurement of the BIST circuit shows consistent results with the measurement by external data acquisition equipment.
Shouhei KIDERA Tetsuo KIRIMOTO
Microwave imaging techniques, in particular synthetic aperture radar (SAR), are able to obtain useful images even in adverse weather or darkness, which makes them suitable for target position or feature estimation. However, typical SAR imagery is not informative for the operator, because it is synthesized using complex radio signals with greater than 1.0 m wavelength. To deal with the target identification issue for imaging radar, various automatic target recognition (ATR) techniques have been developed. One of the most promising ATR approaches is based on neural network classification. However, in the case of SAR images heavily contaminated by random or speckle noises, the classification accuracy is severely degraded because it only compares the outputs of neurons in the final layer. To overcome this problem, this paper proposes a self organized map (SOM) based ATR method, where the binary SAR image is classified using the unified distance matrix (U-matrix) metric given by the SOM. Our numerical analyses and experiments on 5 types of civilian airplanes, demonstrate that the proposed method remarkably enhances the classification accuracy, particular in lower S/N situations, and holds a significant robustness to the angular variations of the observation.
Takenori YASUZUMI Nayuta KAMIYA Ryosuke SUGA Osamu HASHIMOTO Yukinori MATSUSHITA Yasuyuki MATSUDA
This paper presents a compact metal plate lens antenna for evaluating a wave absorber placed on ceiling of the ETC gate. The focal distance of the lens was derived to be 129 cm by the geometrical optics procedure. By arranging the lens in front of a horn antenna, the gain and beamwidth characteristics were improved from 18 dBi to 26 dBi and from 22 degrees to 7 degrees, respectively. Then the antenna characteristics were evaluated when the distance between the antenna and the lens was changed in order to miniaturize the lens antenna. As the result, the changes in beamwidth were held to within 1 dB when the lens came close to the horn antenna. Scattering, phase and electric field intensity of electromagnetic wave were evaluated to clarify the foundation of the given characteristics. It was found that the field intensity for the miniaturized lens antenna is stronger than that for GO designed one though the phase uniformity is worse. The distance between the horn antenna and lens can be reduced to 80 cm. The absorption characteristics for the arranged absorbers which have different absorptions were measured, and it was shown that the proposed method was suitable for specifying the deteriorated absorber in the ETC system.
Aroba KHAN Hernan AGUIRRE Kiyoshi TANAKA
This paper presents two halftoning methods to improve efficiency in generating structurally similar halftone images using Structure Similarity Index Measurement (SSIM). Proposed Method I reduces the pixel evaluation area by applying pixel-swapping algorithm within inter-correlated blocks followed by phase block-shifting. The effect of various initial pixel arrangements is also investigated. Proposed Method II further improves efficiency by applying bit-climbing algorithm within inter-correlated blocks of the image. Simulation results show that proposed Method I improves efficiency as well as image quality by using an appropriate initial pixel arrangement. Proposed Method II reaches a better image quality with fewer evaluations than pixel-swapping algorithm used in Method I and the conventional structure aware halftone methods.
Bei HE Guijin WANG Chenbo SHI Xuanwu YIN Bo LIU Xinggang LIN
This paper presents a self-clustering algorithm to detect symmetry in images. We combine correlations of orientations, scales and descriptors as a triple feature vector to evaluate each feature pair while low confidence pairs are regarded as outliers and removed. Additionally, all confident pairs are preserved to extract potential symmetries since one feature point may be shared by different pairs. Further, each feature pair forms one cluster and is merged and split iteratively based on the continuity in the Cartesian and concentration in the polar coordinates. Pseudo symmetric axes and outlier midpoints are eliminated during the process. Experiments demonstrate the robustness and accuracy of our algorithm visually and quantitatively.
Norrarat WATTANAMONGKHOL Warakorn SRICHAVENGSUP Pisit VANICHCHANUNT Robithoh ANNUR Jun-ichi TAKADA Lunchakorn WUTTISITTIKULKIJ
In a shared medium communication system, mobile users contend for channel access according to a given set of rules to avoid collisions and achieve efficient use of the medium. If one or more users do not comply with the agree rules either due to selfish or malicious behaviours, they will cause some impacts on the system performance, especially to the well-behaved users. In this paper, we consider the problem of user misbehaviours on the performance of a wireless infrastructure-based network using reservation-based MAC protocols. Key misbehaving strategies possible in such a network are identified and explained. To quantify the impact of these misbehaviours upon the network performance, three different misbehaving scenarios are developed to allow a systematic investigation of each misbehaving strategy. For each scenario, we have derived mathematical formulations for evaluating and analyzing the key performance metrics, i.e., probabilities of success of well-behaved and misbehaved users and the fairness index. Numerical results show that the presence of misbehaviours can cause different levels of damage depending on the misbehavior strategy used. The combined multi-token and increasing permission probability strategies where the misbehaved user selfishly accesses the channel more times and with higher probabilities than allowed is shown to cause the most severe impairment of performance and fairness.
Kai BLEKKER Rene RICHTER Ryosuke ODA Satoshi TANIYAMA Oliver BENNER Gregor KELLER Benjamin MUNSTERMANN Andrey LYSOV Ingo REGOLIN Takao WAHO Werner PROST
We report on the fabrication and analysis of basic digital circuits containing InAs nanowire transistors on a host substrate. The nanowires were assembled at predefined positions by means of electric field-assisted self-assembly within each run generating numerous circuits simultaneously. Inverter circuits composed of two separated nanowire transistors forming a driver and an active load have been fabricated. The inverter circuits exhibit a gain (>1) in the MHz regime and a time constant of about 0.9 ns. A sample & hold core element is fabricated based on an InAs nanowire transistor connected to a hold capacitor, both on a Silicon and an InP isolating substrate, respectively. The low leakage read-out of the hold capacitor is done by InP-based metal-insulator heterojunction FET grown on the same substrate prior to nanowire FET fabrication. Experimental operation of the circuit is demonstrated at 100 MHz sampling frequency. The presented approach enables III/V high-speed, low-voltage logic circuits on a wide variety of host substrates which may be up scaled to high volume circuits.
Young-Woo KWAK Jong-Ho LEE Yong-Hwa KIM Seong-Cheol KIM
In this letter, a precoding design for a multiple-input multiple-output (MIMO) full-duplex relay (FDR) system is proposed. For this system, mitigating the self-interference imposed by the transmit antennas on the receive antennas in the same relay station is crucial for improving the performance of the FDR system. The precoding scheme designed in this study uses block-diagonalization (BD). Using this precoding scheme, FDR capacity analysis is performed in the MIMO downlink relay system. Numerical results on system performance in terms of capacity are shown and discussed.
Masahito JINNO Po-Yuan CHEN Ming-Shih LIN Katsuaki MURATA Koosuke HARADA
In DC/DC converters with low output voltage and high output current, the technique of synchronous rectification is widely used for improving the output efficiency. However, SR buck converters can experience the abnormal phenomenon called “self turn-on” which will occur in the low-side switch under some circuit conditions. “Self turn-on” is a malfunction of the low-side switch, basically caused by the resonance of the parasitic inductance and the parasitic capacitance. It results in noticeable power dissipation. In this paper, the phenomenon will be clearly described and investigated. With the theoretical analysis and the experimental verification, strategies that can suppress this phenomenon are proposed.
Jixin CHEN Wei HONG Hongjun TANG Pinpin YAN Li ZHANG Guangqi YANG Debin HOU Ke WU
In this paper, the research advances in silicon based millimeter wave and THz ICs in the State Key Laboratory of Millimeter Waves is reviewed, which consists of millimeter wave amplifiers, mixers, oscillators at Q, V and W and D band based on CMOS technology, and several research approaches of THz passive ICs including cavity and filter structures using SIW-like (Substrate Integrated Waveguide-like) guided wave structures based on CMOS and MEMs process. The design and performance of these components and devices are presented.
We propose a method for halftoning grayscale images by drawing weighted centroidal Voronoi tessellations (WCVTs) with black lines on white image planes. Based on the fact that CVT approaches a uniform hexagonal lattice asymptotically, we derive a relationship of darkness between input grayscale images and the corresponding halftone images. Then the derived relationship is used for adjusting the contrast of the halftone images. Experimental results show that the generated halftone images can reproduce the original tone in the input images faithfully.
Seiya ABE Sihun YANG Masahito SHOYAMA Tamotsu NINOMIYA Akira MATSUMOTO Akiyoshi FUKUI
400 V DC power distribution systems for data centers require a fast response DC circuit breaker is required. The semiconductor DC circuit breaker is an important key technology in DC power distribution systems. This paper considers the malfunction of Silicon Carbide- Static Induction Transistor (SiC-SIT) based DC circuit breakers in 400 V DC power distribution systems for data centers. The malfunction mechanism is explained, and a solution is proposed. Investigations are achieved by MATLAB/Simulink and experimental verification.
Kazuhiro TOKUNAGA Nobuyuki KAWABATA Tetsuo FURUKAWA
We propose a novel modular network called the Self-Evolving Modular Network (SEEM). The SEEM has a modular network architecture with a graph structure and these following advantages: (1) new modules are added incrementally to allow the network to adapt in a self-organizing manner, and (2) graph's paths are formed based on the relationships between the models represented by modules. The SEEM is expected to be applicable to evolving functions of an autonomous robot in a self-organizing manner through interaction with the robot's environment and categorizing large-scale information. This paper presents the architecture and an algorithm for the SEEM. Moreover, performance characteristic and effectiveness of the network are shown by simulations using cubic functions and a set of 3D-objects.
Vasil DIMITROV Akira SAITOU Kazuhiko HONJO
Miniaturized broadband antennas combining a fractal pattern and a self-complementary structure are demonstrated for UWB applications. Using four kinds of fractal patterns generated with an octagon initiator, similar to a self-complementary structure, we investigate the effect of the fractal pattern on broadband performance. The lower band-edge frequency of the broad bandwidth is decreased by the reduced constant input impedance, which is controlled by the vacant area size inside the fractal pattern. The reduced constant input impedance is shown to be produced by the extended current distribution flowing along the vacant areas. Given the results, miniaturized broadband antennas, impedance-matched to 50 Ω, are designed and fabricated. The measured return loss was better than 10 dB between 2.95 and 10.7 GHz with a size of 2712.5 mm. The lower band-edge frequency was reduced by 28% compared with the initiator.