The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MTCMOS(12hit)

1-12hit
  • Sleep Transistor Sizing Method Using Accurate Delay Estimation Considering Input Vector Pattern and Non-linear Current Model

    Seidai TAKEDA  Kyundong KIM  Hiroshi NAKAMURA  Kimiyoshi USAMI  

     
    PAPER-Physical Level Design

      Vol:
    E94-A No:12
      Page(s):
    2499-2509

    Beyond deep sub-micron era, Power Gating (PG) is one of the most effective techniques to reduce leakage power of circuits. The most important issue of PG circuit design is how to decide the width of sleep transistor. Smaller total sleep transistor width provides smaller leakage power in standby mode, however, insufficient sleep transistor insertion suffers from significant performance degradation. In this paper, we present an accurate and fast gate-level delay estimation method for PG circuits and a novel sleep transistor sizing method utilizing our delay estimation for module-based PG circuits. This method achieves high accuracy within acceptable computation time utilizing accurate discharge current estimation based on delayed logic simulations with limited input vector patterns and by realizing precise current characteristics for logic gates and sleep transistors. Experimental results show that our delay estimation successfully achieves high accuracy and avoids overestimation and underestimation seen in conventional method. Also, our sleep transistor sizing method on average successfully reduces the width of sleep transistors by 40% when compared to conventional methods within an acceptable computation time.

  • Optimizing Controlling-Value-Based Power Gating with Gate Count and Switching Activity

    Lei CHEN  Shinji KIMURA  

     
    PAPER-Logic Synthesis, Test and Verfication

      Vol:
    E92-A No:12
      Page(s):
    3111-3118

    In this paper, a new heuristic algorithm is proposed to optimize the power domain clustering in controlling-value-based (CV-based) power gating technology. In this algorithm, both the switching activity of sleep signals (p) and the overall numbers of sleep gates (gate count, N) are considered, and the sum of the product of p and N is optimized. The algorithm effectively exerts the total power reduction obtained from the CV-based power gating. Even when the maximum depth is kept to be the same, the proposed algorithm can still achieve power reduction approximately 10% more than that of the prior algorithms. Furthermore, detailed comparison between the proposed heuristic algorithm and other possible heuristic algorithms are also presented. HSPICE simulation results show that over 26% of total power reduction can be obtained by using the new heuristic algorithm. In addition, the effect of dynamic power reduction through the CV-based power gating method and the delay overhead caused by the switching of sleep transistors are also shown in this paper.

  • Analytical Estimation of Path-Delay Variation for Multi-Threshold CMOS Circuits

    Shiho HAGIWARA  Takashi SATO  Kazuya MASU  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1031-1038

    Circuits utilizing advanced process technologies have to correctly account for device parameter variation to optimize its performance. In this paper, analytical formulas for evaluating path delay variation of Multi-Threshold CMOS (MTCMOS) circuits are proposed. The proposed formulas express path delay and its variation as functions of process parameters that are determined by fabrication technology (threshold voltage, carrier mobility, etc.) and the circuit parameters that are determined by circuit structure (equivalent load capacitance and the concurrently switching gates). Two procedures to obtain the circuit parameter sets necessary in the calculation of the proposed formulas are also defined. With the proposed formulas, calculation time of a path delay variation becomes three orders faster than that of Monte-Carlo simulation. The proposed formulas are suitably applied for efficient design of MTCMOS circuits considering process variation.

  • Fine-Grained Power Gating Based on the Controlling Value of Logic Elements

    Lei CHEN  Takashi HORIYAMA  Yuichi NAKAMURA  Shinji KIMURA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E91-A No:12
      Page(s):
    3531-3538

    Leakage power consumption of logic elements has become a serious problem, especially in the sub-100-nanometer process. In this paper, a novel power gating approach by using the controlling value of logic elements is proposed. In the proposed method, sleep signals of the power-gated blocks are extracted completely from the original circuits without any extra logic element. A basic algorithm and a probability-based heuristic algorithm have been developed to implement the basic idea. The steady maximum delay constraint has also been introduced to handle the delay issues. Experiments on the ISCAS'85 benchmarks show that averagely 15-36% of logic elements could be power gated at a time for random input patterns, and 3-31% of elements could be stopped under the steady maximum delay constraints. We also show a power optimization method for AND/OR tree circuits, in which more than 80% of gates can be power-gated.

  • Delay Modeling and Critical-Path Delay Calculation for MTCMOS Circuits

    Naoaki OHKUBO  Kimiyoshi USAMI  

     
    PAPER-Simulation and Verification

      Vol:
    E89-A No:12
      Page(s):
    3482-3490

    One of the critical issues in MTCMOS design is how to estimate a circuit delay quickly. In MTCMOS circuit, voltage on virtual ground fluctuates due to a discharge current of a logic cell. This event affects to the cell delay and makes static timing analysis (STA) difficult. In this paper, we propose a delay modeling and static STA methodology targeting at MTCMOS circuits. In the proposed method, we prepare a delay look-up table (LUT) consisting of the input slew, the output load capacitance, the virtual ground length, and a power-switch size. Using this LUT, we compute a circuit delay for each logic cell by applying the linear interpolation. This technique enables to calculate the cell delay considering the delay increase by the voltage fluctuation of virtual ground line. Experimental results show that the proposed methodology enables to estimate the cell delay and the critical path delay within 8% errors compared with SPICE simulation.

  • A Leakage Reduction Scheme for Sleep Transistors with Decoupling Capacitors in the Deep Submicron Era

    Kazutoshi KOBAYASHI  Akihiko HIGUCHI  Hidetoshi ONODERA  

     
    PAPER-Electronic Circuits

      Vol:
    E89-C No:6
      Page(s):
    838-843

    Sleep transistors such as MTCMOS and SCCMOS drastically reduce leakage current, but their ON resistances cause significant performance degradation. Larger sleep transistors reduce their ON resistances, but increase leakage current in a sleep mode. Decoupling capacitors beside sleep transistors reduce leakage current. Experimental results show that PMOS SCCMOS with a 4 pF decoupling capacitor reduces leakage current by 1/673 on a 64 bit adder in a 90 nm process.

  • Clock-Free MTCMOS Flip-Flops with High Speed and Low Power

    Bong Hyun LEE  Young Hwan KIM  Kwang-Ok JEONG  

     
    PAPER

      Vol:
    E88-A No:6
      Page(s):
    1416-1424

    This paper proposes two high-performance multi-threshold-voltage CMOS (MTCMOS) F/Fs that are based on the CMOS hybrid-latch F/F and the CMOS semi-dynamic F/F. The proposed F/Fs utilize a clock-gating technique or a data recovery circuit in order to preserve their logic states in the power-down mode. They can change operation modes whether the clock level is high or low, and they provide outputs to fanouts in the power-down mode. When compared with existing clock-free MTCMOS F/Fs, the proposed MTCMOS hybrid-latch F/F shows maximum reduction of average delay, average power, and average power-delay product by 33%, 46%, and 63% for the supply voltage ranging from 0.8 V to 1.2 V. Although outperformed by the MTCMOS hybrid-latch F/F, the proposed MTCMOS semi-dynamic F/F inherits the benefit of the embedded logic from the CMOS SD F/F. Experimental results indicate that the MTCMOS semi-dynamic F/F can be used to implement a logic circuit that is superior to the one designed using the MTCMOS hybrid-latch F/F in speed, power, and area.

  • Dynamic Sleep Control for Finite-State-Machines to Reduce Active Leakage Power

    Kimiyoshi USAMI  Hiroshi YOSHIOKA  

     
    PAPER-Logic Synthesis

      Vol:
    E87-A No:12
      Page(s):
    3116-3123

    Leakage power is predicted to become dominant in the total operation power as the transistor technology gets advanced. Even in the current technology, dramatic increase of leakage power at elevated temperature is a big problem. Burn-in testing, which is typically performed at 125, is facing at difficulties such as throughput degradation or thermal runaway due to increase of leakage power. Reducing leakage power at operation time is essential to solve these problems. We propose a novel approach to make use of an enable signal of a gated-clock technique for reducing active leakage power. A sleep transistor is provided between combinational logic circuits and the ground, and is controlled by the enable signal. When state transitions do not occur in Finite-State-Machines (FSM's), the enable signal becomes low and the state flip-flops keep the data. At the same time, the sleep transistor is turned off so that combinational logic gates are electrically disconnected from the ground to reduce leakage. Simulation results have shown that the proposed scheme reduces active leakage power by 30-60% in 0.18 µm technology. The total power was reduced by 20% at the maximum at 125. It was also found that performance degradation was tolerable for burn-in testing.

  • A Power-Down Circuit Scheme Using Data-Preserving Complementary Pass Transistor Flip-Flop for Low-Power High-Performance Multi-Threshold CMOS LSI

    Ki-Tae PARK  Tomokatsu MIZUKUSA  Hyo-Sig WON  Kyu-Myung CHOI  Jeong-Taek KONG  Hiroyuki KURINO  Mitsumasa KOYANAGI  

     
    LETTER-Electronic Circuits

      Vol:
    E87-C No:4
      Page(s):
    645-648

    A new power-down circuit scheme using data-preserving complementary pass transistor flip-flop circuit for low-power, high-performance Multi-Threshold voltage CMOS (MTCMOS) LSI is presented. The proposed circuit can preserve a stored data during power-down period while maintaining low leakage current without any extra circuit and complex timing design. The flip-flop provides 24% improved delay and 30% less silicon area compared to conventional MTCMOS flip-flop circuit. A 16-bits DSP processor core using the proposed circuit and 0.18 µ m CMOS technology was designed. The DSP chip was successfully operated at 120 MHz, 1.65 V and its total leakage current in power-down mode was four orders smaller than conventional DSP chip.

  • Pipelined Wake-Up Scheme to Reduce Power Line Noise for Block-Wise Shutdown of Low-Power VLSI Systems

    Jin-Hyeok CHOI  Yong-Ju KIM  Jae-Kyung WEE  Seongsoo LEE  

     
    LETTER

      Vol:
    E87-C No:4
      Page(s):
    629-633

    Block-wise shutdown of idle functional blocks in VLSI systems is a promising approach to reduce power consumption. Especially, multi-threshold voltage CMOS (MTCMOS) is widely accepted to save leakage power during idle time. As operating frequency increases, it requires short wake-up time to use the shutdown block in time. However, short wake-up time of a large block causes large current surge during wake-up process. This often leads to system malfunction due to severe power line noise. This is one of the serious problems for practical implementation of MTCMOS block-wise shutdown. This letter proposes an effective wake-up scheme for block-wise shutdown of low-power VLSI systems. It exploits pipelined wake-up strategy that reduces current surge during wake-up process. In this letter, the proposed scheme was analyzed and simulated from the viewpoint of power distribution network. To verify its validity, it was applied to a multiplier block in Compact Flash controller chip on a test board. According to the simulation results of equivalent R, L, and C modeling, the proposed scheme achieved significant improvement over conventional concurrent shutdown schemes.

  • Ultralow-Voltage MTCMOS/SOI Circuits for Batteryless Mobile System

    Takakuni DOUSEKI  Masashi YONEMARU  Eiji IKUTA  Akira MATSUZAWA  Atsushi KAMEYAMA  Shunsuke BABA  Tohru MOGAMI  Hakaru KYURAGI  

     
    INVITED PAPER

      Vol:
    E87-C No:4
      Page(s):
    437-447

    This paper describes an ultralow-power multi-threshold (MT) CMOS/SOI circuit technique that mainly uses fully-depleted MOSFETs. The MTCMOS/SOI circuit, which combines fully-depleted low- and medium-Vth CMOS/SOI logic gates and high-Vth power-switch transistors, makes it possible to lower the supply voltage to 0.5 V and reduce the power dissipation of LSIs to the 1-mW level. We overview some MTCMOS/SOI digital and analog components, such as a CPU, memory, analog/RF circuit and DC-DC converter for an ultralow-power mobile system. The validity of the ultralow-voltage MTCMOS/SOI circuits is confirmed by the demonstration of a self-powered 300-MHz-band short-range wireless system. A 1-V SAW oscillator and a switched-capacitor-type DC-DC converter in the transmitter makes possible self-powered transmission by the heat from a hand. In the receiver, a 0.5-V digital controller composed of a 8-bit CPU, 256-kbit SRAM, and ROM also make self-powered operation under illumination possible.

  • Selective Multi-Threshold Technique for High-Performance and Low-Standby Applications

    Kimiyoshi USAMI  Naoyuki KAWABE  Masayuki KOIZUMI  Katsuhiro SETA  Toshiyuki FURUSAWA  

     
    PAPER-Optimization of Power and Timing

      Vol:
    E85-A No:12
      Page(s):
    2667-2673

    In portable applications such as W-CDMA cell phones, high performance and low standby leakage are both required. We propose an automated design technique to selectively use multi-threshold CMOS (MTCMOS) in a cell-by-cell fashion. MT cells consisting of low-Vth transistors and high-Vth sleep transistors are newly introduced. MT cells are assigned to critical paths to speed up, while High-Vth cells are assigned to non-critical paths to reduce leakage. Compared to the conventional MTCMOS, the gate delay is not affected by the discharge patterns of other gates because there is no virtual ground to be shared. We applied this technique to a test chip of a DSP core for W-CDMA baseband LSI. The worst path-delay was improved by 14% over the single high-Vth design without increasing standby leakage at 10% area overhead.