The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PLA(1376hit)

541-560hit(1376hit)

  • Telemetry and Telestimulation via Implanted Devices Necessary in Long-Term Experiments Using Conscious Untethered Animals for the Development of New Medical Treatments Open Access

    Masaru SUGIMACHI  Toru KAWADA  Kazunori UEMURA  

     
    INVITED PAPER

      Vol:
    E93-B No:4
      Page(s):
    796-801

    Effective countermeasures against explosive increase in healthcare expenditures are urgently needed. A paradigm shift in healthcare is called for, and academics and governments worldwide are working hard on the application of information and communication technologies (ICT) as a feasible and effective measure for reducing medical cost. The more prevalent the disease and the easier disease outcome can be improved, the more efficient is medical ICT in reducing healthcare cost. Hypertension and diabetes mellitus are such examples. Chronic heart failure is another disease in which patients may benefit from ICT-based medical practice. It is conceivable that daily monitoring of hemodynamics together with appropriate treatments may obviate the expensive hospitalization. ICT potentially permit continuous monitoring with wearable or implantable medical devices. ICT may also help accelerate the development of new therapeutic devices. Traditionally effectiveness of treatments is sequentially examined by sacrificing a number of animals at a given time point. These inefficient and inaccurate methods can be replaced by applying ICT to the devices used in chronic animal experiments. These devices allow researchers to obtain biosignals and images from live animals without killing them. They include implantable telemetric devices, implantable telestimulation devices, and imaging devices. Implanted rather than wired monitoring and stimulation devices permit experiments to be conducted under even more physiological conditions, i.e., untethered, free-moving states. Wireless communication and ICT are indispensible technologies for the development of such telemetric and telestimulation devices.

  • Reasoning on the Self-Organizing Incremental Associative Memory for Online Robot Path Planning

    Aram KAWEWONG  Yutaro HONDA  Manabu TSUBOYAMA  Osamu HASEGAWA  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E93-D No:3
      Page(s):
    569-582

    Robot path-planning is one of the important issues in robotic navigation. This paper presents a novel robot path-planning approach based on the associative memory using Self-Organizing Incremental Neural Networks (SOINN). By the proposed method, an environment is first autonomously divided into a set of path-fragments by junctions. Each fragment is represented by a sequence of preliminarily generated common patterns (CPs). In an online manner, a robot regards the current path as the associative path-fragments, each connected by junctions. The reasoning technique is additionally proposed for decision making at each junction to speed up the exploration time. Distinct from other methods, our method does not ignore the important information about the regions between junctions (path-fragments). The resultant number of path-fragments is also less than other method. Evaluation is done via Webots physical 3D-simulated and real robot experiments, where only distance sensors are available. Results show that our method can represent the environment effectively; it enables the robot to solve the goal-oriented navigation problem in only one episode, which is actually less than that necessary for most of the Reinforcement Learning (RL) based methods. The running time is proved finite and scales well with the environment. The resultant number of path-fragments matches well to the environment.

  • Plasma Polymerization for Protein Patterning: Reversible Formation with Fullerene Modification

    Hayato TAKAHASHI  Naoya MURATA  Hitoshi MUGURUMA  

     
    LETTER-Organic Molecular Electronics

      Vol:
    E93-C No:2
      Page(s):
    211-213

    Partial plasma polymerization for coexistence of hydrophobic/hydrophilic area in several ten micrometer size is the typical technique for protein patterning. A hydrophobic hexamethyldisiloxane plasma-polymerized film (HMDS PPF) was deposited on a glass substrate and this surface was partially modified by subsequent nitrogen plasma treatment (hydrophilic surface, HMDS-N PPF) with a patterned shadow mask. An antibody protein (F(ab')2 fragment of anti-human immunoglobulin G) was selectively adsorbed onto the HMDS-N area and was not adsorbed onto the HMDS area. Distinct 8080 µm2 square spots surrounded by a non-protein adsorbed 80 µm-wide grid were observed. Then, when the protein modified by fullerene was used, the reversible patterning was obtained. This indicated that the modification by fullerene changed the hydrophilic nature of F(ab')2 protein to hydrophobic one, as a result, the modified protein was selectively adsorbed onto hydrophobic area.

  • New Cost-Effective Driving Circuit for Plasma-TV

    Jae Kwang LIM  Heung-Sik TAE  Dong-Ho LEE  Kazuhiro ITO  Jung Pil PARK  

     
    PAPER-Electronic Displays

      Vol:
    E93-C No:2
      Page(s):
    200-204

    Unlike the conventional plasma-TVs using the driving circuit with two polarities during the reset and address periods, the cost-effective driving circuit using only the positive voltage level during the reset and address periods is proposed and implemented in the 42-in. plasma-TV.

  • Replacement and Preventive Maintenance Models with Random Working Times

    Mingchih CHEN  Syouji NAKAMURA  Toshio NAKAGAWA  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E93-A No:2
      Page(s):
    500-507

    This paper considers replacement and maintenance policies for an operating unit which works at random times for jobs. The unit undergoes minimal repairs at failures and is replaced at a planned time T or at a number N of working times, whichever occurs first. The expected cost rate is obtained, and an optimal policy which minimizes it is derived analytically. The imperfect preventive maintenance (PM) model, where the unit is improved by PM after the completion of each working time, is analyzed. Furthermore, when the work of a job incurs some damage to the unit, the replacement model with number N is proposed. The expected cost rate is obtained by using theory of cumulative processes. Two modified models, where the unit is replaced at number N or at the first completion of the working time over time T, and it is replaced at T or number N, whichever occurs last, are also proposed. Finally, when the unit is replaced at time T, number N or Kth failure, whichever occurs first, the expected cost rate is also obtained.

  • A Traffic Forecasting Method with Function to Control Residual Error Distribution for IP Access Networks

    Takeshi KITAHARA  Hiroki FURUYA  Hajime NAKAMURA  

     
    PAPER-Internet

      Vol:
    E93-B No:1
      Page(s):
    47-55

    Since traffic in IP access networks is less aggregated than in backbone networks, its variance could be significant and its distribution may be long-tailed rather than Gaussian in nature. Such characteristics make it difficult to forecast traffic volume in IP access networks for appropriate capacity planning. This paper proposes a traffic forecasting method that includes a function to control residual error distribution in IP access networks. The objective of the proposed method is to grasp the statistical characteristics of peak traffic variations, while conventional methods focus on average rather than peak values. In the proposed method, a neural network model is built recursively while weighting residual errors around the peaks. This enables network operators to control the trade-off between underestimation and overestimation errors according to their planning policy. Evaluation with a total of 136 daily traffic volume data sequences measured in actual IP access networks demonstrates the performance of the proposed method.

  • An Ego-Motion Detection System Employing Directional-Edge-Based Motion Field Representations

    Jia HAO  Tadashi SHIBATA  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:1
      Page(s):
    94-106

    In this paper, a motion field representation algorithm based on directional edge information has been developed. This work is aiming at building an ego-motion detection system using dedicated VLSI chips developed for real time motion field generation at low powers . Directional edge maps are utilized instead of original gray-scale images to represent local features of an image and to detect the local motion component in a moving image sequence. Motion detection by edge histogram matching has drastically reduced the computational cost of block matching, while achieving a robust performance of the ego-motion detection system under dynamic illumination variation. Two kinds of feature vectors, the global motion vector and the component distribution vectors, are generated from a motion field at two different scales and perspectives. They are jointly utilized in the hierarchical classification scheme employing multiple-clue matching. As a result, the problems of motion ambiguity as well as motion field distortion caused by camera shaking during video capture have been resolved. The performance of the ego-motion detection system was evaluated under various circumstances, and the effectiveness of this work has been verified.

  • Secure Bit-Plane Based Steganography for Secret Communication

    Cong-Nguyen BUI  Hae-Yeoun LEE  Jeong-Chun JOO  Heung-Kyu LEE  

     
    PAPER-Application Information Security

      Vol:
    E93-D No:1
      Page(s):
    79-86

    A secure method for steganography is proposed. Pixel-value differencing (PVD) steganography and bit-plane complexity segmentation (BPCS) steganography have the weakness of generating blocky effects and noise in smooth areas and being detectable with steganalysis. To overcome these weaknesses, a secure bit-plane based steganography method on the spatial domain is presented, which uses a robust measure to select noisy blocks for embedding messages. A matrix embedding technique is also applied to reduce the change of cover images. Given that the statistical property of cover images is well preserved in stego-images, the proposed method is undetectable by steganalysis that uses RS analysis or histogram-based analysis. The proposed method is compared with the PVD and BPCS steganography methods. Experimental results confirm that the proposed method is secure against potential attacks.

  • Hydrogen Plasma Annealing of ZnO Films Deposited by Magnetron Sputtering with Third Electrode

    Kanji YASUI  Yutaka OOSHIMA  Yuichiro KUROKI  Hiroshi NISHIYAMA  Masasuke TAKATA  Tadashi AKAHANE  

     
    PAPER-Nanomaterials and Nanostructures

      Vol:
    E92-C No:12
      Page(s):
    1438-1442

    Al doped zinc oxide (AZO) films were deposited using a radio frequency (rf) magnetron sputtering apparatus with a mesh grid electrode. Improvement of crystalline uniformity was achieved by the use of an appropriate negative grid bias to effectively suppress the bombardment of high-energy charged particles onto the film surface. The uniformity of the film's electronic properties, such as resistivity, carrier concentration and Hall mobility, was also improved using the sputtering method. Hydrogen plasma annealing was investigated to further decrease the resistivity of the ZnO films and the carrier concentration was increased by 1-21020 cm-3 without decrease in the Hall mobility.

  • Thermal-Aware Incremental Floorplanning for 3D ICs Based on MILP Formulation

    Yuchun MA  Xin LI  Yu WANG  Xianlong HONG  

     
    PAPER-Physical Level Desing

      Vol:
    E92-A No:12
      Page(s):
    2979-2989

    In 3D IC design, thermal issue is a critical challenge. To eliminate hotspots, physical layouts are always adjusted by some incremental changes, such as shifting or duplicating hot blocks. In this paper, we distinguish the thermal-aware incremental changes in three different categories: migrating computation, growing unit and moving hotspot blocks. However, these modifications may degrade the packing area as well as interconnect distribution greatly. In this paper, mixed integer linear programming (MILP) models are devised according to these different incremental changes so that multiple objectives can be optimized simultaneously. Furthermore, to avoid random incremental modification, which may be inefficient and need long runtime to converge, here potential gain is modeled for each candidate incremental change. Based on the potential gain, a novel thermal optimization flow to intelligently choose the best incremental operation is presented. Experimental results show that migrating computation, growing unit and moving hotspot can reduce max on-chip temperature by 7%, 13% and 15% respectively on MCNC/GSRC benchmarks. Still, experimental results also show that the thermal optimization flow can reduce max on-chip temperature by 14% to the initial packings generated by an existing 3D floorplanning tool CBA, and achieve better area and total wirelength improvement than individual operations do. The results with the initial packings from CBA_T (Thermal-aware CBA floorplanner) show that 13.5% temperature reduction can be obtained by our incremental optimization flow.

  • CrossOverlayDesktop: Dynamic Overlay of Desktop Graphics between Co-located Computers for Multi-User Interaction

    Daisuke IWAI  Kosuke SATO  

     
    PAPER-Human-computer Interaction

      Vol:
    E92-D No:12
      Page(s):
    2445-2453

    This paper presents an intuitive interaction technique for data exchange between multiple co-located devices. In the proposed system, CrossOverlayDesktop, desktop graphics of the devices are graphically overlaid with each other (i.e., alpha-blended). Users can exchange file data by the usual drag-and-drop manipulation through an overlaid area. The overlaid area is determined by the physical six degrees of freedom (6-DOF) correlation of the devices and thus changes according to users' direct movements of the devices. Because familiar operations such as drag-and-drop can be applied to file exchange between multiple devices, seamless, consistent, and thus intuitive multi-user collaboration is realized. Furthermore, dynamic overlay of desktop graphics allows users to intuitively establish communication, identify connected devices, and perform access control. For access control of the data, users can protect their own data by simply dragging them out of the overlaid area, because only the overlaid area becomes a public space. Several proof-of-concept experiments and evaluations were conducted. Results show the effectiveness of the proposed interaction technique.

  • Adaptive Ambient Illumination Based on Color Harmony Model

    Ayano KIKUCHI  Keita HIRAI  Toshiya NAKAGUCHI  Norimichi TSUMURA  Yoichi MIYAKE  

     
    LETTER-Color

      Vol:
    E92-A No:12
      Page(s):
    3372-3375

    We investigated the relationship between ambient illumination and psychological effect by applying a modified color harmony model. We verified the proposed model by analyzing correlation between psychological value and modified color harmony score. Experimental results showed the possibility to obtain the best color for illumination using this model.

  • Floorplan-Aware High-Level Synthesis for Generalized Distributed-Register Architectures

    Akira OHCHI  Nozomu TOGAWA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E92-A No:12
      Page(s):
    3169-3179

    As device feature size decreases, interconnection delay becomes the dominating factor of circuit total delay. Distributed-register architectures can reduce the influence of interconnection delay. They may, however, increase circuit area because they require many local registers. Moreover original distributed-register architectures do not consider control signal delay, which may be the bottleneck in a circuit. In this paper, we propose a high-level synthesis method targeting generalized distributed-register architecture in which we introduce shared/local registers and global/local controllers. Our method is based on iterative improvement of scheduling/binding and floorplanning. First, we prepare shared-register groups with global controllers, each of which corresponds to a single functional unit. As iterations proceed, we use local registers and local controllers for functional units on a critical path. Shared-register groups physically located close to each other are merged into a single group. Accordingly, global controllers are merged. Finally, our method obtains a generalized distributed-register architecture where its scheduling/binding as well as floorplanning are simultaneously optimized. Experimental results show that the area is decreased by 4.7% while maintaining the performance of the circuit equal with that using original distributed-register architectures.

  • Novel UWB Bandpass Filter Using CPW-to-Microstrip Transition Structure

    Tae-Hak LEE  Jung-Woo BAIK  Seongmin PYO  Young-Sik KIM  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:12
      Page(s):
    1545-1547

    A novel bandpass filter (BPF) for an ultra-wideband (UWB) system is proposed in this letter. The BPF consists of four coplanar stripline (CPS)-to-microstrip transitions. Each transition is employed for broad electromagnetic (EM) coupling between a short-circuited CPS and an open-circuited microstrip line. The equivalent circuit model of the proposed geometry is derived and utilized in the impedance and mode matching analysis. Measured results show good agreement with the analysis and simulated ones.

  • Current-Voltage Hysteresis Characteristics in MOS Capacitors with Si-Implanted Oxide

    Toshihiro MATSUDA  Shinsuke ISHIMARU  Shingo NOHARA  Hideyuki IWATA  Kiyotaka KOMOKU  Takayuki MORISHITA  Takashi OHZONE  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E92-C No:12
      Page(s):
    1523-1530

    MOS capacitors with Si-implanted thermal oxide and CVD deposited oxide of 30 nm thickness were fabricated for applications of non-volatile memory and electroluminescence devices. Current-voltage (I-V) and I-V hysteresis characteristics were measured, and the hysteresis window (HW) and the integrated charge of HW (ICHW) extracted from the hysteresis data were discussed. The HW characteristics of high Si dose samples showed the asymmetrical double-peaks curves with the hump in both tails. The ICHW almost converged after the 4th cycle and had the voltage sweep speed dependence. All +ICHW and -ICHW characteristics were closely related to the static (+I)-(+VG) and (-I)-(-VG) curves, respectively. For the high Si dose samples, the clear hump currents in the static I-VG characteristics contribute to lower the rising voltage and to steepen the ICHW increase, which correspond to the large stored charge in the oxide.

  • A Multi-Layered Immune System for Graph Planarization Problem

    Shangce GAO  Rong-Long WANG  Hiroki TAMURA  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E92-D No:12
      Page(s):
    2498-2507

    This paper presents a new multi-layered artificial immune system architecture using the ideas generated from the biological immune system for solving combinatorial optimization problems. The proposed methodology is composed of five layers. After expressing the problem as a suitable representation in the first layer, the search space and the features of the problem are estimated and extracted in the second and third layers, respectively. Through taking advantage of the minimized search space from estimation and the heuristic information from extraction, the antibodies (or solutions) are evolved in the fourth layer and finally the fittest antibody is exported. In order to demonstrate the efficiency of the proposed system, the graph planarization problem is tested. Simulation results based on several benchmark instances show that the proposed algorithm performs better than traditional algorithms.

  • Incremental Buffer Insertion and Module Resizing Algorithm Using Geometric Programming

    Qing DONG  Bo YANG  Jing LI  Shigetoshi NAKATAKE  

     
    PAPER-Logic Synthesis, Test and Verfication

      Vol:
    E92-A No:12
      Page(s):
    3103-3110

    This paper presents an efficient algorithm for incremental buffer insertion and module resizing for a full-placed floorplan. Our algorithm offers a method to use the white space in a given floorplan to resize modules and insert buffers, and at the same time keeps the resultant floorplan as close to the original one as possible. Both the buffer insertion and module resizing are modeled as geometric programming problems, and can be solved extremely efficiently using new developed solution methods. The experimental results suggest that the the wire length difference between the initial floorplan and result are quite small (less than 5%), and the global structure of the initial floorplan are preserved very well.

  • Improved Vector Quantization Based Block Truncation Coding Using Template Matching and Lloyd Quantization

    Seung-Won JUNG  Yeo-Jin YOON  Hyeong-Min NAM  Sung-Jea KO  

     
    LETTER-Coding

      Vol:
    E92-A No:12
      Page(s):
    3369-3371

    Block truncation coding (BTC) is an efficient image compression algorithm that generates a constant output bit-rate. For color image compression, vector quantization (VQ) is exploited to improve the coding efficiency. In this letter, we propose an improved VQ based BTC (VQ-BTC) algorithm using template matching and Lloyd quantization (LQ). The experimental results show that the proposed method improves the PSNR by 0.9 dB in average compared to the conventional VQ-BTC algorithms.

  • An Implementation of Privacy Protection for a Surveillance Camera Using ROI Coding of JPEG2000 with Face Detection

    Mitsuji MUNEYASU  Shuhei ODANI  Yoshihiro KITAURA  Hitoshi NAMBA  

     
    LETTER-Image Processng

      Vol:
    E92-A No:11
      Page(s):
    2858-2861

    On the use of a surveillance camera, there is a case where privacy protection should be considered. This paper proposes a new privacy protection method by automatically degrading the face region in surveillance images. The proposed method consists of ROI coding of JPEG2000 and a face detection method based on template matching. The experimental result shows that the face region can be detected and hidden correctly.

  • TCP/IP Performance Evaluations Based on Elevation Angles for Mobile Communications Employing Stratospheric Platform

    Marry KONG  Otabek YORKINOV  Shigeru SHIMAMOTO  

     
    PAPER

      Vol:
    E92-B No:11
      Page(s):
    3335-3344

    This paper describes a proposed propagation estimation method and TCP/IP-based evaluations for mobile communications employing a stratospheric platform. To estimate a wireless channel, a realistic and detailed description of its physical environment must be accurately defined. Therefore, a building distribution model characterizing the physical environment in areas in Japan is presented. The analyses of the propagation estimation method are based on the "ray-tracing" model. The results from the proposed method are derived depending on elevation and azimuth angles. In order to validate our results, comparisons between the proposed method and our previous measurement are made for a typical semi-urban area in Japan. The comparisons show close agreement between the estimation results and the measurement results. Finally and interestingly, we present communication performance evaluations based on TCP/IP protocol by using the results achieved from our channel estimation with semi-analytical and simulation approach.

541-560hit(1376hit)