The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PU(3318hit)

701-720hit(3318hit)

  • A Varactor-Based All-Digital Multi-Phase PLL with Random-Sampling Spur Suppression Techniques

    Chia-Wen CHANG  Kai-Yu LO  Hossameldin A. IBRAHIM  Ming-Chiuan SU  Yuan-Hua CHU  Shyh-Jye JOU  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:4
      Page(s):
    481-490

    This paper presents a varactor-based all-digital phase-locked loop (ADPLL) with a multi-phase digitally controlled oscillator (DCO) for near-threshold voltage operation. In addition, a new all-digital reference spur suppression (RSS) circuit with multiple phases random-sampling techniques to effectively spread the reference clock frequency is proposed to randomize the synchronized DCO register behavior and reduce the reference spur. Because the equivalent reference clock frequency is reserved, the loop behavior is maintained. The area of the proposed spur suppression circuit is only 4.9% of the ADPLL (0.038 mm2). To work reliably at the near-threshold region, a multi-phase DCO with NMOS varactors is presented to acquire precise frequency resolution and high linearity. In the near-threshold region (VDD =0.52 V), the ADPLL only dissipates 269.9 μW at 100 MHz output frequency. It has a reference spur of -52.2 dBc at 100 MHz output clock frequency when the spur suppression circuit is deactivated. When the spur suppression circuit is activated, the ADPLL shows a reference spur of -57.3 dBc with the period jitter of 0.217% UI.

  • A Scheme for Fast k-Concealment Anonymization

    Ryosuke KOYANAGI  Ryo FURUKAWA  Tsubasa TAKAHASHI  Takuya MORI  Toshiyuki AMAGASA  Hiroyuki KITAGAWA  

     
    PAPER

      Pubricized:
    2016/01/14
      Vol:
    E99-D No:4
      Page(s):
    1000-1009

    In this paper we propose an improved algorithm for k-concealment, which has been proposed as an alternative to the well-known k-anonymity model. k-concealment achieves similar privacy goals as k-anonymity; it proposes to generalize records in a table in such a way that each record is indistinguishable from at least k-1 other records, while achieving higher utility than k-anonymity. However, its computation is quite expensive in particular when dealing with large datasets containing massive records due to its high computational complexity. To cope with this problem, we propose neighbor lists, where for each record similar records are stored. Neighbor lists are constructed in advance, and can also be efficiently constructed by mapping each record to a point in a high-dimensional space and using appropriate multidimensional indexes. Our proposed scheme successfully decreases the execution time from O(kn2) to O(k2n+knlogn), and it can be practically applied to databases with millions of records. The experimental evaluation using a real dataset reveals that the proposed scheme can achieve the same level of utility as k-concealment while maintaining the efficiency at the same time.

  • Application of Feature Engineering for Phishing Detection

    Wei ZHANG  Huan REN  Qingshan JIANG  

     
    PAPER

      Pubricized:
    2016/01/28
      Vol:
    E99-D No:4
      Page(s):
    1062-1070

    Phishing attacks target financial returns by luring Internet users to exposure their sensitive information. Phishing originates from e-mail fraud, and recently it is also spread by social networks and short message service (SMS), which makes phishing become more widespread. Phishing attacks have drawn great attention due to their high volume and causing heavy losses, and many methods have been developed to fight against them. However, most of researches suffered low detection accuracy or high false positive (FP) rate, and phishing attacks are facing the Internet users continuously. In this paper, we are concerned about feature engineering for improving the classification performance on phishing web pages detection. We propose a novel anti-phishing framework that employs feature engineering including feature selection and feature extraction. First, we perform feature selection based on genetic algorithm (GA) to divide features into critical features and non-critical features. Then, the non-critical features are projected to a new feature by implementing feature extraction based on a two-stage projection pursuit (PP) algorithm. Finally, we take the critical features and the new feature as input data to construct the detection model. Our anti-phishing framework does not simply eliminate the non-critical features, but considers utilizing their projection in the process of classification, which is different from literatures. Experimental results show that the proposed framework is effective in detecting phishing web pages.

  • Fast Mode Decision Technique for HEVC Intra Prediction Based on Reliability Metric for Motion Vectors

    Chihiro TSUTAKE  Yutaka NAKANO  Toshiyuki YOSHIDA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/01/21
      Vol:
    E99-D No:4
      Page(s):
    1193-1201

    This paper proposes a fast mode decision technique for intra prediction of High Efficiency Video Coding (HEVC) based on a reliability metric for motion vectors (RMMV). Since such a decision problem can be regarded as a kind of pattern classification, an efficient classifier is required for the reduction of computation complexity. This paper employs the RMMV as a classifier because the RMMV can efficiently categorize image blocks into flat(uniform), active, and edge blocks, and can estimate the direction of an edge block as well. A local search for angular modes is introduced to further speed up the decision process. An experiment shows the advantage of our technique over other techniques.

  • Node-to-Set Disjoint Paths Problem in a Möbius Cube

    David KOCIK  Yuki HIRAI  Keiichi KANEKO  

     
    PAPER-Dependable Computing

      Pubricized:
    2015/12/14
      Vol:
    E99-D No:3
      Page(s):
    708-713

    This paper proposes an algorithm that solves the node-to-set disjoint paths problem in an n-Möbius cube in polynomial-order time of n. It also gives a proof of correctness of the algorithm as well as estimating the time complexity, O(n4), and the maximum path length, 2n-1. A computer experiment is conducted for n=1,2,...,31 to measure the average performance of the algorithm. The results show that the average time complexity is gradually approaching to O(n3) and that the maximum path lengths cannot be attained easily over the range of n in the experiment.

  • An InP-Based 27-GHz-Bandwidth Limiting TIA IC Designed to Suppress Undershoot and Ringing in Its Output Waveform

    Hiroyuki FUKUYAMA  Michihiro HIRATA  Kenji KURISHIMA  Minoru IDA  Masami TOKUMITSU  Shogo YAMANAKA  Munehiko NAGATANI  Toshihiro ITOH  Kimikazu SANO  Hideyuki NOSAKA  Koichi MURATA  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:3
      Page(s):
    385-396

    A design scheme for a high-speed differential-input limiting transimpedance amplifier (TIA) was developed. The output-stage amplifier of the TIA is investigated in detail in order to suppress undershoot and ringing in the output waveform. The amplifier also includes a peak detector for the received signal strength indicator (RSSI) output, which is used to control the optical demodulator for differential-phase-shift-keying or differential-quadrature-phase-shift-keying formats. The limiting TIA was fabricated on the basis of 1-µm emitter-width InP-based heterojunction-bipolar-transistor (HBT) IC technology. Its differential gain is 39 dB, its 3-dB bandwidth is 27 GHz, and its estimated differential transimpedance gain is 73 dBΩ. The obtained output waveform shows that the developed design scheme is effective for suppressing undershoot and ringing.

  • Novel Reconfigurable Hardware Accelerator for Protein Sequence Alignment Using Smith-Waterman Algorithm

    Atef IBRAHIM  Hamed ELSIMARY  Abdullah ALJUMAH  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:3
      Page(s):
    683-690

    This paper presents novel reconfigurable semi-systolic array architecture for the Smith-Waterman with an affine gap penalty algorithm to align protein sequences optimized for shorter database sequences. This architecture has been modified to enable hardware reuse rather than replicating processing elements of the semi-systolic array in multiple FPGAs. The proposed hardware architecture and the previously published conventional one are described at the Register Transfer Level (RTL) using VHDL language and implemented using the FPGA technology. The results show that the proposed design has significant higher normalized speedup (up to 125%) over the conventional one for query sequence lengths less than 512 residues. According to the UniProtKB/TrEMBL protein database (release 2015_05) statistics, the largest number of sequences (about 80%) have sequence length less than 512 residues that makes the proposed design outperforms the conventional one in terms of speed and area in this sequence lengths range.

  • Real Cholesky Factor-ADI Method for Low-Rank Solution of Projected Generalized Lyapunov Equations

    Yuichi TANJI  

     
    PAPER-Nonlinear Problems

      Vol:
    E99-A No:3
      Page(s):
    702-709

    The alternating direction implicit (ADI) method is proposed for low-rank solution of projected generalized continuous-time algebraic Lyapunov equations. The low-rank solution is expressed by Cholesky factor that is similar to that of Cholesky factorization for linear system of equations. The Cholesky factor is represented in a real form so that it is useful for balanced truncation of sparsely connected RLC networks. Moreover, we show how to determine the shift parameters which are required for the ADI iterations, where Krylov subspace method is used for finding the shift parameters that reduce the residual error quickly. In the illustrative examples, we confirm that the real Cholesky factor certainly provides low-rank solution of projected generalized continuous-time algebraic Lyapunov equations. Effectiveness of the shift parameters determined by Krylov subspace method is also demonstrated.

  • Online Weight Balancing on the Unit Circle

    Hiroshi FUJIWARA  Takahiro SEKI  Toshihiro FUJITO  

     
    PAPER

      Pubricized:
    2015/12/16
      Vol:
    E99-D No:3
      Page(s):
    567-574

    We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $ rac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.

  • Interference Cancellation for Intra and Inter UWB Systems Using Modified Hermite Polynomials Based Orthogonal Matched Filter

    Takumi KOBAYASHI  Chika SUGIMOTO  Ryuji KOHNO  

     
    PAPER

      Vol:
    E99-B No:3
      Page(s):
    569-577

    Ultra-wideband (UWB) communications is used for medical information communication technology (MICT) as a dependable and safe communication technology in recent years. On the other hand, there are existing various UWB systems that are not used for MICT. Generally, these UWB systems use almost the same frequency band. Therefore, they interfere to each other in general transmission channel environment. In our previous work, a novel UWB pulse shape modulation using modified Hermite pulse is proposed as a multiple user access scheme. In this paper, we propose a mitigation method for inter-user interference and inter-system interference using combination of orthogonal pulse shape modulation and orthogonal matched filter (OMF) detector. The purposes of our system are to detect all signals of users in the same UWB system and to reduce the unknown interference from other UWB systems at the same time. This paper provides performance evaluation results based on both of analytical and numerical evaluation. Simulation results show that the proposed system can detect the signals that were transmitted from the same UWB system using orthogonal pulse set, while the proposed system can reduce the interference from unknown UWB systems at the same time. The theoretical analysis is expected that noise tolerance of our proposal will be deteriorated in the additive Gaussian noise channel in comparison with the conventional matched filter. It is confirmed that the numerical evaluation illustrates such noise tolerance equivalent to the theoretical analysis result.

  • Performance of an Inline RZ-DPSK Pulse Compression Using Raman Amplifier and Its Application in OTDM Tributary

    Quynh NGUYEN QUANG NHU  Hung NGUYEN TAN  Quang NGUYEN-THE  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER

      Vol:
    E99-C No:2
      Page(s):
    227-234

    We experimentally investigate the performance of a distributed Raman amplifier (DRA)-based pulse compressor for a phase modulated signal. A 10 Gb/s return-to-zero (RZ)-differential phase shift keying (DPSK) signal is compressed to picosecond range after transmission. Pulsewidth is continuously compressed in a wide range from 20 to 3.2 ps by changing the pump power of the DRA while the compressed waveforms are well-matched with sech2 function. Error-free operations at bit-error-rate (BER) of 10-9 are achieved for the compressed signals of various pulsewidths with low power penalties within 2.3 dB compared to the back-to-back. After the compression, the 10 Gb/s signal is used to generate a 40 Gb/s RZ-DPSK optical time division multiplexing (OTDM) signal. This 40 Gb/s OTDM signal is then successfully demultiplexed to 10 Gb/s DPSK signal by using an optical gate based on four-wave mixing (FWM) in a highly nonlinear fiber (HNLF).

  • Indoor Experimental Evaluation of the QoE-Oriented Wireless LAN with Dynamic Network Reconfiguration

    Kazuto YANO  Mariko SEKIGUCHI  Tomohiro MIYASAKA  Takashi YAMAMOTO  Hirotsugu YAMAMOTO  Yoshizo TANAKA  Yoji OKADA  Masayuki ARIYOSHI  Tomoaki KUMAGAI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:2
      Page(s):
    507-522

    We have proposed a quality of experience (QoE)-oriented wireless local area network (WLAN) to provide sufficient QoE to important application flows. Unlike ordinary IEEE 802.11 WLAN, the proposed QoE-oriented WLAN dynamically performs admission control with the aid of the prediction of a “loadable capacity” criterion. This paper proposes an algorithm for dynamic network reconfiguration by centralized control among multiple basic service sets (BSSs) of the QoE-oriented WLAN, in order to maximize the number of traffic flows whose QoE requirements can be satisfied. With the proposed dynamic reconfiguration mechanism, stations (STAs) can change access point (AP) to connect. The operating frequency channel of a BSS also can be changed. These controls are performed according to the current channel occupancy rate of each BSS and the required radio resources to satisfy the QoE requirement of the traffic flow that is not allowed to transmit its data by the admission control. The effectiveness of the proposed dynamic network reconfiguration is evaluated through indoor experiments with assuming two cases. One is a 14-node experiment with QoE-oriented WLAN only, and the other is a 50-node experiment where the ordinary IEEE 802.11 WLAN and the QoE-oriented WLAN coexist. The experiment confirms that the QoE-oriented WLAN can significantly increase the number of traffic flows that satisfy their QoE requirements, total utility of network, and QoE-satisfied throughput, which is the system throughput contributing to satisfy the QoE requirement of traffic flows. It is also revealed that the QoE-oriented WLAN can protect the traffic flows in the ordinary WLAN if the border of the loadable capacity is properly set even in the environment where the hidden terminal problem occurs.

  • k-Degree Layer-Wise Network for Geo-Distributed Computing between Cloud and IoT

    Yiqiang SHENG  Jinlin WANG  Haojiang DENG  Chaopeng LI  

     
    PAPER

      Vol:
    E99-B No:2
      Page(s):
    307-314

    In this paper, we propose a novel architecture for a deep learning system, named k-degree layer-wise network, to realize efficient geo-distributed computing between Cloud and Internet of Things (IoT). The geo-distributed computing extends Cloud to the geographical verge of the network in the neighbor of IoT. The basic ideas of the proposal include a k-degree constraint and a layer-wise constraint. The k-degree constraint is defined such that the degree of each vertex on the h-th layer is exactly k(h) to extend the existing deep belief networks and control the communication cost. The layer-wise constraint is defined such that the layer-wise degrees are monotonically decreasing in positive direction to gradually reduce the dimension of data. We prove the k-degree layer-wise network is sparse, while a typical deep neural network is dense. In an evaluation on the M-distributed MNIST database, the proposal is superior to a state-of-the-art model in terms of communication cost and learning time with scalability.

  • Improvement of Single-Electron Digital Logic Gates by Utilizing Input Discretizers

    Tran THI THU HUONG  Hiroshi SHIMADA  Yoshinao MIZUGAKI  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:2
      Page(s):
    285-292

    We numerically demonstrated the improvement of single-electron (SE) digital logic gates by utilizing SE input discretizers (IDs). The parameters of the IDs were adjusted to achieve SE tunneling at the threshold voltage designed for switching. An SE four-junction inverter (FJI) with an ID (ID-FJI) had steep switching characteristics between the high and low output voltage levels. The limiting temperature and the critical parameter margins were evaluated. An SE NAND gate with IDs also achieved abrupt switching characteristics between output logic levels.

  • A Novel RZF Precoding Method Based on Matrix Decomposition: Reducing Complexity in Massive MIMO Systems

    Qian DENG  Li GUO  Jiaru LIN  Zhihui LIU  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:2
      Page(s):
    439-446

    In this paper, we propose an efficient regularized zero-forcing (RZF) precoding method that has lower hardware resource requirements and produces a shorter delay to the first transmitted symbol compared with truncated polynomial expansion (TPE) that is based on Neumann series in massive multiple-input multiple-output (MIMO) systems. The proposed precoding scheme, named matrix decomposition-polynomial expansion (MDPE), essentially applies a matrix decomposition algorithm based on polynomial expansion to significantly reduce full matrix multiplication computational complexity. Accordingly, it is suitable for real-time hardware implementations and high-mobility scenarios. Furthermore, the proposed method provides a simple expression that links the optimization coefficients to the ratio of BS/UTs antennas (β). This approach can speed-up the convergence to the matrix inverse by a matrix polynomial with small terms and further reduce computation costs. Simulation results show that the MDPE scheme can rapidly approximate the performance of the full precision RZF and optimal TPE algorithm, while adaptively selecting matrix polynomial terms in accordance with the different β and SNR situations. It thereby obtains a high average achievable rate of the UTs under power allocation.

  • Average-Case Analysis of Certificate Revocation in Combinatorial Certificate Management Schemes

    Dae Hyun YUM  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:2
      Page(s):
    663-665

    To overcome the privacy limitations of conventional PKI (Public Key Infrastructure) systems, combinatorial certificate schemes assign each certificate to multiple users so that users can perform anonymous authentication. From a certificate pool of N certificates, each user is given n certificates. If a misbehaving user revokes a certificate, all the other users who share the revoked certificate will also not be able to use it. When an honest user shares a certificate with a misbehaving user and the certificate is revoked by the misbehaving user, the certificate of the honest user is said to be covered. To date, only the analysis for the worst scenario has been conducted; the probability that all n certificates of an honest user are covered when m misbehaving users revoke their certificates is known. The subject of this article is the following question: how many certificates (among n certificates) of an honest user are covered on average when m misbehaving users revoke their certificates? We present the first average-case analysis of the cover probability in combinatorial certificate schemes.

  • Synthesis of Output Feedback Controllers for Bisimilarity Control of Transition Systems

    Nam TUNG VU  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E99-A No:2
      Page(s):
    483-490

    We consider a bisimilarity control problem for transition systems. For this control problem, a necessary and sufficient condition for its solvability and a method for synthesizing a state feedback controller have been presented in the literature. However, the state of the system to be controlled is not necessarily observable. In this paper, we synthesize an observer-based output feedback controller for the bisimilarity control problem under a certain condition, and show that this output feedback controller is a solution to the control problem.

  • Analog and Digital Collaborative Design Techniques for Wireless SoCs

    Ryuichi FUJIMOTO  

     
    INVITED PAPER

      Vol:
    E99-A No:2
      Page(s):
    514-522

    Analog and digital collaborative design techniques for wireless SoCs are reviewed in this paper. In wireless SoCs, delicate analog performance such as sensitivity of the receiver is easily degraded due to interferences from digital circuit blocks. On the other hand, an analog performance such as distortion is strongly compensated by digital assist techniques with low power consumption. In this paper, a sensitivity recovery technique using the analog and digital collaborative design, and digital assist techniques to achieve low-power and high-performance analog circuits are presented. Such analog and digital collaborative design is indispensable for wireless SoCs.

  • A Full-Flexibility-Guaranteed Pin-Count Reduction Design for General-Purpose Digital Microfluidic Biochips

    Trung Anh DINH  Shigeru YAMASHITA  Tsung-Yi HO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:2
      Page(s):
    570-578

    Different from application-specific digital microfluidic biochips, a general-purpose design has several advantages such as dynamic reconfigurability, and fast on-line evaluation for real-time applications. To achieve such superiority, this design typically activates each electrode in the chip using an individual control pin. However, as the design complexity increases substantially, an order-of-magnitude increase in the number of control pins will significantly affect the manufacturing cost. To tackle this problem, several methods adopting a pin-sharing mechanism for general-purpose designs have been proposed. Nevertheless, these approaches sacrifice the flexibility of droplet movement, and result in an increase of bioassay completion time. In this paper, we present a novel pin-count reduction design methodology for general-purpose microfluidic biochips. Distinguished from previous approaches, the proposed methodology not only reduces the number of control pins significantly but also guarantees the full flexibility of droplet movement to ensure the minimal bioassay completion time.

  • A Fast Quantum Computer Simulator Based on Register Reordering

    Masaki NAKANISHI  Miki MATSUYAMA  Yumi YOKOO  

     
    PAPER-Computer System

      Pubricized:
    2015/11/19
      Vol:
    E99-D No:2
      Page(s):
    332-340

    Quantum computer simulators play an important role when we evaluate quantum algorithms. Quantum computation can be regarded as parallel computation in some sense, and thus, it is suitable to implement a simulator on hardware that can process a lot of operations in parallel. In this paper, we propose a hardware quantum computer simulator. The proposed simulator is based on the register reordering method that shifts and swaps registers containing probability amplitudes so that the probability amplitudes of target basis states can be quickly selected. This reduces the number of large multiplexers and improves clock frequency. We implement the simulator on an FPGA. Experiments show that the proposed simulator has scalability in terms of the number of quantum bits, and can simulate quantum algorithms faster than software simulators.

701-720hit(3318hit)