The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SER(2307hit)

61-80hit(2307hit)

  • Design, Fabrication, and Evaluation of Waveguide Structure Using Si/CaF2 Heterostructure for Near- and Mid- Infrared Silicon Photonics

    Long LIU  Gensai TEI  Masahiro WATANABE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/07/08
      Vol:
    E106-C No:1
      Page(s):
    1-6

    We have proposed integrated waveguide structure suitable for mid- and near- infrared light propagation using Si and CaF2 heterostructures on Si substrate. Using a fabrication process based on etching, lithography and crystal growth techniques, we have formed a slab-waveguide structure with a current injection mechanism on a SOI substrate, which would be a key component for Si/CaF2 quantum cascade lasers and other optical integrated systems. The propagation of light at a wavelength of 1.55 µm through a Si/CaF2 waveguide structure have been demonstrated for the first time using a structure with a Si/CaF2 multilayered core with 610-nm-thick, waveguide width of 970 nm, which satisfies single-mode condition in the horizontal direction within a tolerance of fabrication accuracy. The waveguide loss for transverse magnetic (TM) mode has been evaluated to be 51.4 cm-1. The cause of the loss was discussed by estimating the edge roughness scattering and free carrier absorption, which suggests further reduction of the loss would be possible.

  • Random Access Identifier-Linked Receiver Beamforming with Transmitter Filtering in TDD-Based Random Access Open Access

    Yuto MUROKI  Yotaro MURAKAMI  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/05/25
      Vol:
    E105-B No:12
      Page(s):
    1548-1558

    This paper proposes a novel random access identifier (RAID)-linked receiver beamforming method for time division duplex (TDD)-based random access. When the number of receiver antennas at the base station is large in a massive multiple-input multiple-output (MIMO) scenario, the channel estimation accuracy per receiver antenna at the base station receiver is degraded due to the limited received signal power per antenna from the user terminal. This results in degradation in the receiver beamforming (BF) or antenna diversity combining and active RAID detection. The purpose of the proposed method is to achieve accurate active RAID detection and channel estimation with a reasonable level of computational complexity at the base station receiver. In the proposed method, a unique receiver BF vector applied at the base station is linked to each of the M RAIDs prepared by the system. The user terminal selects an appropriate pair comprising a receiver BF vector and a RAID in advance based on the channel estimation results in the downlink assuming channel reciprocity in a TDD system. Therefore, per-receiver antenna channel estimation for receiver BF is not necessary in the proposed method. Furthermore, in order to utilize fully the knowledge of the channel at the user transmitter, we propose applying transmitter filtering (TF) to the proposed method for effective channel shortening in order to increase the orthogonal preambles for active RAID detection and channel estimation prepared for each RAID. Computer simulation results show that the proposed method greatly improves the accuracy of active RAID detection and channel estimation. This results in lower error rates than that for the conventional method performing channel estimation at each antenna in a massive MIMO environment.

  • A Multi-Tree Approach to Mutable Order-Preserving Encoding

    Seungkwang LEE  Nam-su JHO  

     
    LETTER

      Pubricized:
    2022/07/28
      Vol:
    E105-D No:11
      Page(s):
    1930-1933

    Order-preserving encryption using the hypergeomatric probability distribution leaks about the half bits of a plaintext and the distance between two arbitrary plaintexts. To solve these problems, Popa et al. proposed a mutable order-preserving encoding. This is a keyless encoding scheme that adopts an order-preserving index locating the corresponding ciphertext via tree-based data structures. Unfortunately, it has the following shortcomings. First, the frequency of the ciphertexts reveals that of the plaintexts. Second, the indices are highly correlated to the corresponding plaintexts. For these reasons, statistical cryptanalysis may identify the encrypted fields using public information. To overcome these limitations, we propose a multi-tree approach to the mutable order-preserving encoding. The cost of interactions increases by the increased number of trees, but the proposed scheme mitigates the distribution leakage of plaintexts and also reduces the problematic correlation to plaintexts.

  • A 16/32Gbps Dual-Mode SerDes Transmitter with Linearity Enhanced SST Driver

    Li DING  Jing JIN  Jianjun ZHOU  

     
    PAPER

      Pubricized:
    2022/05/13
      Vol:
    E105-A No:11
      Page(s):
    1443-1449

    This brief presents A 16/32Gb/s dual-mode transmitter including a linearity calibration loop to maintain amplitude linearity of the SST driver. Linearity detection and corresponding master-slave power supply circuits are designed to implement the proposed architecture. The proposed transmitter is manufactured in a 22nm FD-SOI process. The linearity calibration loop reduces the peak INL errors of the transmitter by 50%, and the RLM rises from 92.4% to 98.5% when the transmitter is in PAM4 mode. The chip area of the transmitter is 0.067mm2, while the proposed linearity enhanced part is 0.05×0.02mm2 and the total power consumption is 64.6mW with a 1.1V power supply. The linearity calibration loop can be detached from the circuit without consuming extra power.

  • Reinforcement Learning for QoS-Constrained Autonomous Resource Allocation with H2H/M2M Co-Existence in Cellular Networks

    Xing WEI  Xuehua LI  Shuo CHEN  Na LI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1332-1341

    Machine-to-Machine (M2M) communication plays a pivotal role in the evolution of Internet of Things (IoT). Cellular networks are considered to be a key enabler for M2M communications, which are originally designed mainly for Human-to-Human (H2H) communications. The introduction of M2M users will cause a series of problems to traditional H2H users, i.e., interference between various traffic. Resource allocation is an effective solution to these problems. In this paper, we consider a shared resource block (RB) and power allocation in an H2H/M2M coexistence scenario, where M2M users are subdivided into delay-tolerant and delay-sensitive types. We first model the RB-power allocation problem as maximization of capacity under Quality-of-Service (QoS) constraints of different types of traffic. Then, a learning framework is introduced, wherein a complex agent is built from simpler subagents, which provides the basis for distributed deployment scheme. Further, we proposed distributed Q-learning based autonomous RB-power allocation algorithm (DQ-ARPA), which enables the machine type network gateways (MTCG) as agents to learn the wireless environment and choose the RB-power autonomously to maximize M2M pairs' capacity while ensuring the QoS requirements of critical services. Simulation results indicates that with an appropriate reward design, our proposed scheme succeeds in reducing the impact of delay-tolerant machine type users on critical services in terms of SINR thresholds and outage ratios.

  • Incentive-Stable Matching Protocol for Service Chain Placement in Multi-Operator Edge System

    Jen-Yu WANG  Li-Hsing YEN  Juliana LIMAN  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1353-1360

    Network Function Virtualization (NFV) enables the embedding of Virtualized Network Function (VNF) into commodity servers. A sequence of VNFs can be chained in a particular order to form a service chain (SC). This paper considers placing multiple SCs in a geo-distributed edge system owned by multiple service providers (SPs). For a pair of SC and SP, minimizing the placement cost while meeting a latency constraint is formulated as an integer programming problem. As SC clients and SPs are self-interested, we study the matching between SCs and SPs that respects individual's interests yet maximizes social welfare. The proposed matching approach excludes any blocking individual and block pair which may jeopardize the stability of the result. Simulation results show that the proposed approach performs well in terms of social welfare but is suboptimal concerning the number of placed SCs.

  • Cost-Effective Service Chain Construction with VNF Sharing Model Based on Finite Capacity Queue

    Daisuke AMAYA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1361-1371

    Service chaining is attracting attention as a promising technology for providing a variety of network services by applying virtual network functions (VNFs) that can be instantiated on commercial off-the-shelf servers. The data transmission for each service chain has to satisfy the quality of service (QoS) requirements in terms of the loss probability and transmission delay, and hence the amount of resources for each VNF is expected to be sufficient for satisfying the QoS. However, the increase in the amount of VNF resources results in a high cost for improving the QoS. To reduce the cost of utilizing a VNF, sharing VNF instances through multiple service chains is an effective approach. However, the number of packets arriving at the VNF instance is increased, resulting in a degradation of the QoS. It is therefore important to select VNF instances shared by multiple service chains and to determine the amount of resources for the selected VNFs. In this paper, we propose a cost-effective service chain construction with a VNF sharing model. In the proposed method, each VNF is modeled as an M/M/1/K queueing model to evaluate the relationship between the amount of resources and the loss probability. The proposed method determines the VNF sharing, the VNF placement, the amount of resources for each VNF, and the transmission route of each service chain. For the optimization problem, these are applied according to our proposed heuristic algorithm. We evaluate the performance of the proposed method through a simulation. From the numerical examples, we show the effectiveness of the proposed method under certain network topologies.

  • Voronoi-Based UAV Flight Method for Non-Uniform User Distribution in Delay-Tolerant Aerial Networks

    Hiroyuki ASANO  Hiraku OKADA  Chedlia BEN NAILA  Masaaki KATAYAMA  

     
    PAPER-Network

      Pubricized:
    2022/05/11
      Vol:
    E105-B No:11
      Page(s):
    1414-1423

    This paper considers an emergency communication system controlling multiple unmanned aerial vehicles (UAVs) in the sky over a large-scale disaster-affected area. This system is based on delay-tolerant networking, and information from ground users is relayed by the UAVs through wireless transmission and the movement of UAVs in a store-and-forward manner. Each UAV moves autonomously according to a predetermined flight method, which uses the positions of other UAVs through communication. In this paper, we propose a new method for UAV flight considering the non-uniformity of user distributions. The method is based on the Voronoi cell using the predicted locations of other UAVs. We evaluate the performance of the proposed method through computer simulations with a non-uniform user distribution generated by a general cluster point process. The simulation results demonstrate the effectiveness of the proposed method.

  • Opportunities, Challenges, and Solutions in the 5G Era Open Access

    Chien-Chi KAO  Hey-Chyi YOUNG  

     
    INVITED PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1291-1298

    For many countries in the world, 5G is of strategic significance. In the 5G era, telecom operators are expected to enable and provide multiple services with different communication characteristics like enhanced broadband, ultra-reliable and extreme real-time communications at the same time. To meet the requirements, the 5G network essentially will be more complex compared with traditional 3G/4G networks. The unique characteristics of 5G resulted from new technologies bring a lot of opportunities as well as significant challenges. In this paper we first introduce 5G vision and check the global status. And then we illustrate the 5G technical essentials and point out the new opportunities that 5G will bring to us. We also highlight the coming challenges and share our 5G experience and solutions toward 5G vision in many aspects, including network, management and business.

  • 4-Cycle-Start-Up Reference-Clock-Less Digital CDR Utilizing TDC-Based Initial Frequency Error Detection with Frequency Tracking Loop Open Access

    Tetsuya IIZUKA  Meikan CHIN  Toru NAKURA  Kunihiro ASADA  

     
    PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    544-551

    This paper proposes a reference-clock-less quick-start-up CDR that resumes from a stand-by state only with a 4-bit preamble utilizing a phase generator with an embedded Time-to-Digital Converter (TDC). The phase generator detects 1-UI time interval by using its internal TDC and works as a self-tunable digitally-controlled delay line. Once the phase generator coarsely tunes the recovered clock period, then the residual time difference is finely tuned by a fine Digital-to-Time Converter (DTC). Since the tuning resolution of the fine DTC is matched by design with the time resolution of the TDC that is used as a phase detector, the fine tuning completes instantaneously. After the initial coarse and fine delay tuning, the feedback loop for frequency tracking is activated in order to improve Consecutive Identical Digits (CID) tolerance of the CDR. By applying the frequency tracking architecture, the proposed CDR achieves more than 100bits of CID tolerance. A prototype implemented in a 65nm bulk CMOS process operates at a 0.9-2.15Gbps continuous rate. It consumes 5.1-8.4mA in its active state and 42μA leakage current in its stand-by state from a 1.0V supply.

  • Communication Quality Estimation Observer: An Approach for Integrated Communication Quality Estimation and Control for Digital-Twin-Assisted Cyber-Physical Systems Open Access

    Ryogo KUBO  

     
    INVITED PAPER

      Pubricized:
    2022/04/14
      Vol:
    E105-B No:10
      Page(s):
    1139-1153

    Cyber-physical systems (CPSs) assisted by digital twins (DTs) integrate sensing-actuation loops over communication networks in various infrastructure services and applications. This study overviews the concept, methodology, and applications of the integrated communication quality estimation and control for the DT-assisted CPSs from both communications and control perspectives. The DT-assisted CPSs can be considered as networked control systems (NCSs) with virtual dynamic models of physical entities. A communication quality estimation observer (CQEO), which is an extended version of the communication disturbance observer (CDOB) utilized for time-delay compensation in NCSs, is proposed to estimate the integrated effects of the quality of services (QoS) and cyberattacks on the NCS applications. A path diversity technique with the CQEO is also proposed to achieve reliable NCSs. The proposed technique is applied to two kinds of NCSs: remote motor control and haptic communication systems. Moreover, results of the simulation on a haptic communication system show the effectiveness of the proposed approach. In the end, future research directions of the CQEO-based scheme are presented.

  • Asynchronous NOMA Downlink Based on Single-Carrier Frequency-Domain Equalization

    Tomonari KURAYAMA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1173-1180

    Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.

  • Constant-Round Fair SS-4PC for Private Decision Tree Evaluation

    Hikaru TSUCHIDA  Takashi NISHIDE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/09
      Vol:
    E105-A No:9
      Page(s):
    1270-1288

    Multiparty computation (MPC) is a cryptographic method that enables a set of parties to compute an arbitrary joint function of the private inputs of all parties and does not reveal any information other than the output. MPC based on a secret sharing scheme (SS-MPC) and garbled circuit (GC) is known as the most common MPC schemes. Another cryptographic method, homomorphic encryption (HE), computes an arbitrary function represented as a circuit by using ciphertexts without decrypting them. These technologies are in a trade-off relationship for the communication/round complexities, and the computation cost. The private decision tree evaluation (PDTE) is one of the key applications of these technologies. There exist several constant-round PDTE protocols based on GC, HE, or the hybrid schemes that are secure even if a malicious adversary who can deviate from protocol specifications corrupts some parties. There also exist other protocols based only on SS-MPC that are secure only if a semi-honest adversary who follows the protocol specification corrupts some parties. However, to the best of our knowledge, there are currently no constant-round PDTE protocols based only on SS-MPC that are secure against a malicious adversary. In this work, we propose a constant-round four-party PDTE protocol that achieves malicious security. Our protocol provides the PDTE securely and efficiently even when the communication environment has a large latency.

  • Combating Password Vulnerability with Keystroke Dynamics Featured by WiFi Sensing

    Yuanwei HOU  Yu GU  Weiping LI  Zhi LIU  

     
    PAPER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/04/01
      Vol:
    E105-A No:9
      Page(s):
    1340-1347

    The fast evolving credential attacks have been a great security challenge to current password-based information systems. Recently, biometrics factors like facial, iris, or fingerprint that are difficult to forge rise as key elements for designing passwordless authentication. However, capturing and analyzing such factors usually require special devices, hindering their feasibility and practicality. To this end, we present WiASK, a device-free WiFi sensing enabled Authentication System exploring Keystroke dynamics. More specifically, WiASK captures keystrokes of a user typing a pre-defined easy-to-remember string leveraging the existing WiFi infrastructure. But instead of focusing on the string itself which are vulnerable to password attacks, WiASK interprets the way it is typed, i.e., keystroke dynamics, into user identity, based on the biologically validated correlation between them. We prototype WiASK on the low-cost off-the-shelf WiFi devices and verify its performance in three real environments. Empirical results show that WiASK achieves on average 93.7% authentication accuracy, 2.5% false accept rate, and 5.1% false reject rate.

  • Joint User Association and Spectrum Allocation in Satellite-Terrestrial Integrated Networks

    Wenjing QIU  Aijun LIU  Chen HAN  Aihong LU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/15
      Vol:
    E105-B No:9
      Page(s):
    1063-1077

    This paper investigates the joint problem of user association and spectrum allocation in satellite-terrestrial integrated networks (STINs), where a low earth orbit (LEO) satellite access network cooperating with terrestrial networks constitutes a heterogeneous network, which is beneficial in terms of both providing seamless coverage as well as improving the backhaul capacity for the dense network scenario. However, the orbital movement of satellites results in the dynamic change of accessible satellites and the backhaul capacities. Moreover, spectrum sharing may be faced with severe co-channel interferences (CCIs) caused by overlapping coverage of multiple access points (APs). This paper aims to maximize the total sum rate considering the influences of the dynamic feature of STIN, backhaul capacity limitation and interference management. The optimization problem is then decomposed into two subproblems: resource allocation for terrestrial communications and satellite communications, which are both solved by matching algorithms. Finally, simulation results show the effectiveness of our proposed scheme in terms of STIN's sum rate and spectrum efficiency.

  • Highly-Accurate and Real-Time Speech Measurement for Laser Doppler Vibrometers

    Yahui WANG  Wenxi ZHANG  Zhou WU  Xinxin KONG  Yongbiao WANG  Hongxin ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2022/06/08
      Vol:
    E105-D No:9
      Page(s):
    1568-1580

    Laser Doppler Vibrometers (LDVs) enable the acquisition of remote speech signals by measuring small-scale vibrations around a target. They are now widely used in the fields of information acquisition and national security. However, in remote speech detection, the coherent measurement signal is subject to environmental noise, making detecting and reconstructing speech signals challenging. To improve the detection distance and speech quality, this paper proposes a highly accurate real-time speech measurement method that can reconstruct speech from noisy coherent signals. First, the I/Q demodulation and arctangent phase discrimination are used to extract the phase transformation caused by the acoustic vibration from coherent signals. Then, an innovative smoothness criterion and a novel phase difference-based dynamic bilateral compensation phase unwrapping algorithm are used to remove any ambiguity caused by the arctangent phase discrimination in the previous step. This important innovation results in the highly accurate detection of phase jumps. After this, a further innovation is used to enhance the reconstructed speech by applying an improved waveform-based linear prediction coding method, together with adaptive spectral subtraction. This removes any impulsive or background noise. The accuracy and performance of the proposed method were validated by conducting extensive simulations and comparisons with existing techniques. The results show that the proposed algorithm can significantly improve the measurement of speech and the quality of reconstructed speech signals. The viability of the method was further assessed by undertaking a physical experiment, where LDV equipment was used to measure speech at a distance of 310m in an outdoor environment. The intelligibility rate for the reconstructed speech exceeded 95%, confirming the effectiveness and superiority of the method for long-distance laser speech measurement.

  • Compressed Sensing Based Power Allocation and User Selection with Adaptive Resource Block Selection for Downlink NOMA Systems

    Tomofumi MAKITA  Osamu MUTA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    959-968

    The application of compressed sensing (CS) theory to non-orthogonal multiple access (NOMA) systems has been investigated recently. As described in this paper, we propose a quality-of-service (QoS)-aware, low-complexity, CS-based user selection and power allocation scheme with adaptive resource block selection for downlink NOMA systems, where the tolerable interference threshold is designed mathematically to achieve a given QoS requirement by being relaxed to a constrained l1 norm optimization problem. The proposed scheme adopts two adaptive resource block (RB) selection algorithms that assign proper RB to user pairs, i.e. max-min channel assignment and two-step opportunistic channel assignment. Simulation results show that the proposed scheme is more effective at improving the user rate than other reference schemes while reducing the required complexity. The QoS requirement is approximately satisfied as long as the required QoS value is feasible.

  • A Hybrid Genetic Service Mining Method Based on Trace Clustering Population

    Yahui TANG  Tong LI  Rui ZHU  Cong LIU  Shuaipeng ZHANG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2022/04/28
      Vol:
    E105-D No:8
      Page(s):
    1443-1455

    Service mining aims to use process mining for the analysis of services, making it possible to discover, analyze, and improve service processes. In the context of Web services, the recording of all kinds of events related to activities is possible, which can be used to extract new information of service processes. However, the distributed nature of the services tends to generate large-scale service event logs, which complicates the discovery and analysis of service processes. To solve this problem, this research focus on the existing large-scale service event logs, a hybrid genetic service mining based on a trace clustering population method (HGSM) is proposed. By using trace clustering, the complex service system is divided into multiple functionally independent components, thereby simplifying the mining environment; And HGSM improves the mining efficiency of the genetic mining algorithm from the aspects of initial population quality improvement and genetic operation improvement, makes it better handle large service event logs. Experimental results demonstrate that compare with existing state-of-the-art mining methods, HGSM has better characteristics to handle large service event logs, in terms of both the mining efficiency and model quality.

  • A Hardware Efficient Reservoir Computing System Using Cellular Automata and Ensemble Bloom Filter

    Dehua LIANG  Jun SHIOMI  Noriyuki MIURA  Masanori HASHIMOTO  Hiromitsu AWANO  

     
    PAPER-Computer System

      Pubricized:
    2022/04/08
      Vol:
    E105-D No:7
      Page(s):
    1273-1282

    Reservoir computing (RC) is an attractive alternative to machine learning models owing to its computationally inexpensive training process and simplicity. In this work, we propose EnsembleBloomCA, which utilizes cellular automata (CA) and an ensemble Bloom filter to organize an RC system. In contrast to most existing RC systems, EnsembleBloomCA eliminates all floating-point calculation and integer multiplication. EnsembleBloomCA adopts CA as the reservoir in the RC system because it can be implemented using only binary operations and is thus energy efficient. The rich pattern dynamics created by CA can map the original input into a high-dimensional space and provide more features for the classifier. Utilizing an ensemble Bloom filter as the classifier, the features provided by the reservoir can be effectively memorized. Our experiment revealed that applying the ensemble mechanism to the Bloom filter resulted in a significant reduction in memory cost during the inference phase. In comparison with Bloom WiSARD, one of the state-of-the-art reference work, the EnsembleBloomCA model achieves a 43× reduction in memory cost while maintaining the same accuracy. Our hardware implementation also demonstrated that EnsembleBloomCA achieved over 23× and 8.5× reductions in area and power, respectively.

  • PRIGM: Partial-Regression-Integrated Generic Model for Synthetic Benchmarks Robust to Sensor Characteristics

    Kyungmin KIM  Jiung SONG  Jong Wook KWAK  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2022/04/04
      Vol:
    E105-D No:7
      Page(s):
    1330-1334

    We propose a novel synthetic-benchmarks generation model using partial time-series regression, called Partial-Regression-Integrated Generic Model (PRIGM). PRIGM abstracts the unique characteristics of the input sensor data into generic time-series data confirming the generation similarity and evaluating the correctness of the synthetic benchmarks. The experimental results obtained by the proposed model with its formula verify that PRIGM preserves the time-series characteristics of empirical data in complex time-series data within 10.4% on an average difference in terms of descriptive statistics accuracy.

61-80hit(2307hit)