The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

16041-16060hit(16314hit)

  • Analysis of Localized Temperature Distribution in SOI Devices

    Hizuru YAMAGUCHI  Shigeki HIRASAWA  Nobuo OWADA  Nobuyoshi NATSUAKI  

     
    PAPER-SOI Devices

      Vol:
    E75-C No:12
      Page(s):
    1438-1441

    Localized temperature distribution in silicon on insulator (SOI) structures with trench isolations is calculated using three-dimensional computer simulation. Temperature rise in SOI transistors is about three times higher than in conventional structure transistors because the thermal conductivity of SiO2 is very low. If there are voids in the SiO2 layers and trench isolations, temperature in the SOI transistors increases significantly. A simple model is proposed to calculate steady-state temperature rise in SOI transistors.

  • Hot-Carrier Reliability in Submicrometer Ultra-Thin SOI-MOSFET's

    Yasuo YAMAGUCHI  Masahiro SHIMIZU  Yasuo INOUE  Tadashi NISHIMURA  Katsuhiro TSUKAMOTO  

     
    PAPER-Hot Carrier

      Vol:
    E75-C No:12
      Page(s):
    1465-1470

    Hot-carrier characteristics in ultra-thin SOI MOSFET's (T-SOI MOSFET's) with gate-overlapped LDD have been investigated. The change in transistor static characteristics after hot carrier stress was mainly observed as positive threshold voltage (Vt) shifts due to trapped electrons, while in bulk-Si MOSFET's drain current degradation was dominant. The hot-carrier life time in T-SOI MOSFET's was comparable to that in bulk-Si devices at low drain voltage, but the life time dependence on drain voltage was different from that in bulk-Si MOSFET's, and the Vt degraded rapidly at the condition that parasitic bipolar breakdown began to occur. This implies that the drain supply voltage in T-SOI MOSFET's is determined directly by parasitic bipolar breakdown voltage unlike bulk-Si MOSFET's in which it is determined by hot-carrier reliability. The gate-overlapped LDD structure was compared with single drain structure and proved to provide better hot-carrier endurance by the improvement of the parasitic bipolar breakdown voltage. The hot-carrier reliability in the back channels of T-SOI MOSFET's was also investigated, and it was found that the back channel tends to be degraded more easily than front channel with large positive Vt shifts. These results suggest that the front Vt shifts in T-SOI devices are related with electron injection into the back surface of the T-SOI layer through charge coupling at the condition that the parasitic bipolar breakdown occurs.

  • High-Temperature Operation of nMOSFET on Bonded SOI

    Yoshihiro ARIMOTO  

     
    PAPER-SOI Devices

      Vol:
    E75-C No:12
      Page(s):
    1442-1446

    This paper describes high-temperature operation of nMOSFET on bonded SOI. A long-channel nMOSFET is fabricated on bonded SOI (Si layer thickness 0.3 µm), SOS (Si layer thickness 0.3 µm), and bulk Si, Bonded SOI is produced using pulse-field-assisited bonding and resistivity-sensitive etching. The high-temperature operation of bonded SOI nMOSFET is demonstrated and compared with SOS and bulk MOSFETs. The leakage current variation with temperature is signnificantly smaller in bonded SOI and in SOS than in bulk MOSFETs. At high temperatures, the drain current to leakage current ratio is 100 times higher in bonded SOI than in SOS and bulk devices. At 300, a ratio of 104 is obtained for the bonded SOI nMOSFET. The ratio is expected to be even higher if a reduced channel length and ultrathin (less than 0.1 µm) bonded SOI is used.

  • Bevel Style High Voltage Power Transistor for Power IC

    Kazuhiro TSURUTA  Mitsutaka KATADA  Seiji FUJINO  Tadashi HATTORI  

     
    PAPER-SOI Devices

      Vol:
    E75-C No:12
      Page(s):
    1459-1464

    A bipolar power transistor which has beveled side walls with an exposed PN junction has been fabricate using silicon wafer direct bonding technique. It is suitable for a power IC which has a control circuit formed on a SOI structure and a vertical power transistor. It can achieve the breakdown voltage of more than 1000 V in smaller chip size than conventional power devices and reduce the ON-resistance because it is possible to optimize the thickness and resistivity of its low impurity collector layer. Angles of beveled side walls were determined by simulating the electric fields in the devices. As a result, it was found that both NPN and PNP bipolar power transistors with breakdown voltages of 1500 V could be fabricated.

  • SIMOX Wafers Having Low Dislocation Density Formed with a Substoichiometric Dose of Oxygen

    Sadao NAKASHIMA  Katsutoshi IZUMI  

     
    PAPER-SOI Wafers

      Vol:
    E75-C No:12
      Page(s):
    1415-1420

    The threading dislocation density and the structure of SIMOX wafers formed under different implantation conditions have been invenstigated using Secco etching, cross-sectional transmission electron microscopy and Raman spectroscopy. The breakdown voltage of the buried oxide layer has also been studied. The dislocation density is greatly affected by the dose and the wafer temperature during implantation. The SIMOX wafer implanted at 180 keV with a substoichiometric dose of 0.4 1018 O+ cm-2 at 550 and subsequently annealed at 1350 has an extremely low dislocation density on the order of 102 cm-2. The effect of the wafer temperature on the reduction of the dislocation density is discussed.

  • On Dynamic Channel Assignment Strategies in Cellular Mobile Radio Systems

    Kazunori OKADA  Fumito KUBOTA  

     
    INVITED PAPER

      Vol:
    E75-A No:12
      Page(s):
    1634-1641

    The rising demand for mobile communication is increasing the importance of efficient use of limited radio frequency resources. The assignment of radio channels to the cells of current cellular mobile radio systems, specifically, to each base station, has been much studied to increase efficiency in radio frequency use. Dynamic Channel Assignment (DCA) is one approach to this problem. This paper compares the basic characteristics of DCA with Fixed Channel Assignment (FCA) and describes the main DCA strategies. The most important current research topics on DCA are discussed, focusing on micro-cellular systems, which are considered indispensable in meeting the huge demand for future mobile communications.

  • Rearrangement Methods of Dynamic Channel Assignment in Cellular Mobile Systems

    Keisuke NAKANO  Masakazu SENGOKU  Toshihiko TAKAHASHI  Yoshio YAMAGUCHI  Shoji SHINODA  Takeo ABE  

     
    PAPER

      Vol:
    E75-A No:12
      Page(s):
    1660-1666

    In mobile communication systems using Dynamic Channel Assignment, channels are possible to be rearranged so that blocking probability can be made low. The smaller the number of cells where channels are rearranged, the smaller the load on the base stations in the cells. Also, we can reduce the deterioration of communication quality caused by reassingning a new channel to a call instead of the channel already assigned. In this paper, we consider not only how to rearrange channels but also which channel should be rearranged and assigned to a new call in rearrangement, and propose very simple but effective methods for rearrangement. The ways to select a candidate channel to be rearranged and assigned to a new call in the new methods make the number of cells where a channel is rearranged smaller. We also examine the relations between characteristics and the number of cells where a channel is rearranged. Using computer simulation results, the properties of the new rearrangement methods are compared with those of the traditional methods.

  • Voice Communication Connection Control in Digital Public Land Mobile Networks

    Masami YABUSAKI  Kouji YAMAMOTO  Shinji UEBAYASHI  Hiroshi NAKAMURA  

     
    PAPER

      Vol:
    E75-A No:12
      Page(s):
    1702-1709

    This paper describes voice communication connection controls in digital public land mobile networks (D-PLMNs). Voice communications in the D-PLMNs are carried at about 10 kbit/s over narrow-band TDMA channels with highly efficient cellular voice encoding schemes. Extensive research is being carried on half-rate voice encoding schemes that will effectively double radio resources. We first outline the configuration of voice communication connection between a cellular phone in the D-PLMN and a telephone in a fixed network, and we describe the optimum position for the CODECs that transform cellular voice codes to the conventional voice codes used in the fixed network, and vice versa. Then we propose a CODEC-bypassed communication control scheme that improves the quality of voice communication between cellular phones. And we propose a cellular voice code negotiation scheme in the D-PLMN which supports different cellular voice encoding schemes. We also propose an efficient channel reassignment scheme for effectively assigning TDMA channels to voice calls with two different bitrates (full-rate and half-rate), and we analyze this scheme's traffic capability. Finally, we describe a dual-tone multiple-frequency (DTMF) signal transmission scheme and estimate the number of DTMF signal senders required in the D-PLMN.

  • Bit Error Probability and Throughput Performance of Time Spread PPM/CDMA Systems

    Xuping ZHOU  Ikuo OKA  Chikato FUJIWARA  

     
    PAPER

      Vol:
    E75-A No:12
      Page(s):
    1696-1701

    A model for time spread-pulse position modulation (TS-PPM)/code division multiple access (CDMA) systems is presented. A TS signal is produced by a TS-filter, whose characteristic is a pseudonoise sequence in frequency domain. The error probability performance is analyzed and compared with those of on-off keying (OOK) and binary phase shift keying (BPSK). It is shown that at the same transmission speed TS-PPM is superior to TS-OOK and TS-BPSK due to the dramatic decrease of multiple access interference. The throughput of the network is analyzed, and its relation to the length of pseudonoise sequence and the packet length is also discussed.

  • Investigation on High-Speed Performance of 0.1-µm-Gate, Ultrathin-Film CMOS/SIMOX

    Yasuhisa OMURA  Sadao NAKASHIMA  Katsutoshi IZUMI  

     
    PAPER-Deep Sub-micron SOI CMOS

      Vol:
    E75-C No:12
      Page(s):
    1491-1497

    A 0.1-µm-gate CMOS/SIMOX has been successfully fabricated using high quality SIMOX substrates. The propagation delay time for the 0.1-µm-gate CMOS/SIMOX is not so noticeable due to the parasitic resistance of the source and drain regions. We anticipate 0.1-µm-gate CMOS/SIMOX devices with a delay time of less than 20 ps at a supply voltage of 1.5 V by reducing the remaining parasitic resistance and capacitances.

  • A Mathematical Theory for Transient Analysis of Communication Networks

    Hisashi KOBAYASHI  Qiang REN  

     
    INVITED PAPER

      Vol:
    E75-B No:12
      Page(s):
    1266-1276

    In the present paper we present a mathematical theory for the transient analysis of probabilistic models relevant to communication networks. First we review the z-transform method, the matrix method, and the Laplace transform, as applied to a class of birth-and-death process model that is relevant to characterize network traffic sources. We then show how to develop transient solutions in terms of the eigenvalues and spectral expansions. In the latter half the paper we develop a general theory to solve dynamic behavior of statistical multiplexer for multiple types of traffic sources, which will arise in the B-ISDN environment. We transform the partial differential equation that governs the system into a concise form by using the theory of linear operator. We present a closed form expression (in the Laplace transform domain) for transient solutions of the joint probability distribution of the number of on sources and buffer content for an arbitrary initial condition. Both finite and infinite buffer capacity cases are solved exactly. The essence of this general result is based on the unique determination of unknown boundary conditions of the probability distributions. Other possible applications of this general theory are discussed, and several problems for future investigations are identified.

  • Modeling and Performance Analysis of SPC Switching Systems

    Shuichi SUMITA  

     
    PAPER

      Vol:
    E75-B No:12
      Page(s):
    1277-1286

    Modeling and performance analysis have played an important role in the economical design and efficient operation of switching systems, and is currently becoming more important because the switching systems should handle a wide range of traffic characteristics, meeting the grade of service requirements of each traffic type. Without these techniques we could no longer achieve economy and efficiency of the switching systems in complex traffic characteristic environments. From the beginning of research on electronic switching systems offering circuit-switched applications, Stored Program Control (SPC) technology has posed challenges in the area of modeling and performance analysis as well as queueing structure, efficient scheduling, and overload control strategy design. Not only teletraffic engineers and performance analysts, but also queueing theorists have been attracted to this new field, and intensive research activities, both in theory and in practice, have continued over the past two decades, now evolving to even a broader technical field including traditional performance analysis. This article reviews a number of important issues that have been raised and solved, and whose solutions have been reflected in the design of SPC switching systems. It first discusses traffic problems for centralized control systems. It next discusses traffic problems inherent in distributed switching systems.

  • Approximate Distribution of Processor Utilization and Design of an Overload Detection Scheme for SPC Switching Systems

    Toshihisa OZAWA  

     
    PAPER

      Vol:
    E75-B No:12
      Page(s):
    1287-1291

    Processors are important resources of stored program control (SPC) switching systems, and estimation of their workload level is crucial to maintaining service quality. Processor utilization is measured as processor usage per unit time, and workload level is usually estimated from measurement of this utilization during a given interval. This paper provides an approximate distribution of processor utilization of SPC switching systems, and it provides a method for designing an overload detection scheme. This method minimizes the observation interval required to keep overload detection errors below specified values. This observation interval is obtained as an optimal solution of a linear programming.

  • ULSI Technology Trends toward 256K/1G DRAMs

    Masahiro KASHIWAGI  

     
    INVITED PAPER

      Vol:
    E75-C No:11
      Page(s):
    1304-1312

    If a perspective of the "256M/1G era" were to be made from this present, namely the last stage of the development of 64 M DRAMs, the process technologies will show a variety of progress. Some of them would remain only in the extension of the present ones, but others would show a fundamental change including their technological constitutions. The optical lithography will survive even the "256M/1G era" mainly with the innovations of mask technologies. The etching technologies will remain basically the same as the present ones, but will be much more refined. The studies on plasma/redical related surface reactions, however, will bring a variety of surface treatment technologies of new function. The interconnection technologies will encounter various kinds of difficulties both in materials and in processign, and mechanical processing will become one of ULSI processing technologies. The shallow junction technology will merge with the metallization and epitaxial growth technology. The thin dielectrics will approach a critical situation, and it might enhance the device structural change to three dimensional ones. Corresponding to this, the necessity of "vertical processing" will become larger. The bonding SOI technology might overcome these situations of increasing difficulties. On the other hand, the contamination control will be the base of these technology innovations and improvements, exploring a new technology field in addition to the conventional process technology fields.

  • Derivation of a Parallel Bottom-Up Parser from a Sequential Parser

    Kazuko TAKAHASHI  

     
    PAPER-Software Theory

      Vol:
    E75-D No:6
      Page(s):
    852-860

    This paper describes the derivation of a parallel program from a nondeterministic sequential program using a bottom-up parser as an example. The derivation procedure consists of two stages: exploitation of AND-parallelism and exploitation of OR-parallelism. An interpreter of the sequential parser BUP is first transformed so that processes for the nodes in a parsing tree can run in parallel. Then, the resultant program is transformed so that a nondeterministic search of a parsing tree can be done in parallel. The former stage is performed by hand-simulation, and the latter is accomplished by the compiler of ANDOR-, which is an AND/OR parallel logic programming language. The program finally derived, written in KL1 (Kernel Language of the FGCS Project), achieves an all-solution search without side effects. The program generated corresponds to an interpreter of PAX, a revised parallel version of BUP. This correspondence shows that the derivation method proposed in this paper is effective for creating efficient parallel programs.

  • Comparison of Aliasing Probability for Multiple MISRs and M-Stage MISRs with m Inputs

    Kazuhiko IWASAKI  Shou-Ping FENG  Toru FUJIWARA  Tadao KASAMI  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    835-841

    MISRs are widely used as signature circuits for VLSI built-in self tests. To improve the aliasing probability of MISRs, multiple MISRs and M-stage MISRs with m inputs are available, where M is grater than m. The aliasing probability as a function of the test length is analyzed for the compaction circuits for a binary symmetric channel. It is observed that the peak aliasing probability of the double MISRs is less than that of M-stage MISRs with m inputs. It is also shown that the final aliasing probability for a multiple MISR with d MISRs is 2dm and that for an M-stage MISR with m imputs is 2M if it is characterized by a primitive polynomial.

  • A ST (Stretchable Memory Matrix) DRAM with Multi-Valued Addressing Scheme

    Tsukasa OOISHI  Mikio ASAKURA  Hideto HIDAKA  Kazutami ARIMOTO  Kazuyasu FUJISHIMA  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1323-1332

    A multi-valued addressing scheme is proposed for a high speed, high packing density memory system. This scheme is a level-multiplex addressing scheme instead of standard time-multiplex addressing scheme, and provides all address signals to the DRAM at the same time without increasing the address pin counts. This scheme makes memory matrix strechable and achieves the low power dissipation using the enhanced partial array activation. The 16 Mb stretchable memory matrix DRAM (16MbSTDRAM) is examined using this addressing design. A power dissipation of 121.5 mW, access time of 30 ns, and 20 pin have been estimated for 3.3 v 16MbSTDRAM with X/Y=15/9 adress configuration. The low power battery-drive memory system for such as the note-book or the handheld-type personal computers can be realized by the STDRAMs with the multi-valued addressing scheme.

  • A New Indexing Technique for Nested Queries on Composite Objects

    Yong-Moo KWON  Yong-Jin PARK  

     
    PAPER-Databases

      Vol:
    E75-D No:6
      Page(s):
    861-872

    A new indexing technique for rapid evaluation of nested query on composite object is propoced, reducing the overall cost for retrieval and update. An extended B+ tree is introduced in which object identifier (OID) to be searched and path information usud for update of index record are stored in leaf node and subleaf node, respectively. In this method, the retrieval oeration is applied only for OIDs in the leaf node. The index records of both leaf and subleaf nodes are updated in such a way that the path information in the subleaf node and OIDs in the leaf node are reorganized by deleting and inserting the OIDs. The techniaue presented offers advantages over currently related indexing techniques in data reorganization and index allocation. In the proposed index record, the OIDs to be reorganized are always consecutively provided, and thus only the record directory is updated when an entire page should be removed. In addition, the proposed index can be allocate to a path with the length greater than 3 without splitting the path. Comparisons under a variety of conditions are given with current indexing techniques, showing improved performance in cost, i.e., the total number of pages accessed for retrieval and update.

  • Analysis of Engine States and Automobile Features Based on Time-Dependent Spectral Characteristics

    Yumi TAKIZAWA  Shinichi SATO  Keisuke ODA  Atsushi FUKASAWA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1524-1532

    This paper describes a nonstationary spectral analysis method and its application to prognosis and diagnosis of automobiles. An instantaneous frequency spectrum is considered first at a single point of time based on the instantaneous representation of autocorrelation. The spectral distortion is then considered on two-dimensional spectrum, and the filtering is introduced into the instantaneous autocorrelations. By the above procedure, the Instantaneous Covariance method (ICOV), the Instantaneous Maximum Entropy Method (IMEM), and the Wigner method are shown and they are unified. The IMEM is used for the time-dependent spectral estimation of vibration and acoustic sound signals of automobiles. A multi-dimensional (M-D) space is composed based on the variables which are obtained by the IMEM. The M-D space is transformed into a simple two-dimensional (2-D) plane by a projection matrix chosen by the experiments. The proposed method is confirmed useful to analyze nonstationary signals, and it is expected to implement automatic supervising, prognosis and diagnosis for a traffic system.

  • Context-Free Grammars with Memory

    Etsuro MORIYA  

     
    PAPER-Automaton, Language and Theory of Computing

      Vol:
    E75-D No:6
      Page(s):
    847-851

    CFGs (context-free grammars) with various types of memory are introduced and their generative capacities are investigated. For an automata-theoretic characterization, a new type of automaton called partitioning automaton is introduced and it is shown that the class of languages generated by CFGs with memory type X is equal to the class of languages accepted by partitioning automata of type X.

16041-16060hit(16314hit)