The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

6081-6100hit(21534hit)

  • Analysis on Effectiveness of TDM Inter-Cell Interference Coordination in Heterogeneous Networks

    Masashi FUSHIKI  Noriaki MIYAZAKI  Xiaoqiu WANG  Satoshi KONISHI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1318-1326

    In order to support the increasing amount of mobile data traffic, Third Generation Partnership Project (3GPP) is actively discusses cell range expansion (CRE) and time domain multiplexing – inter-cell interference coordination (TDM-ICIC). They have shown to be attractive techniques for heterogeneous network (HetNet) deployment where pico base stations (BSs) overlay macro BSs. There are two control schemes of the TDM-ICIC. One, named ZP-scheme, stops radio resource assignments for data traffic in predetermined radio resources in the time domain (subframes). The other, named RP-scheme, maintains the resource assignment whereas it reduces the transmission power at macro BSs at predetermined subframes. In this paper, we clarify the effective ranges of both ZP-scheme and RP-scheme by conducting the system level simulations. Moreover, the appropriate power reduction value at predetermined subframes is also clarified from the difference in the effective range of various power reduction values. The comprehensive evaluation results show that both ZP-scheme and RP-scheme are not effective when the CRE bias value is 0 dB or less. If the CRE bias value is larger than 0 dB, they are effective when the ratio of predetermined subframes in all subframes is set to appropriate values. These values depend on the CRE bias value and power reduction in the predetermined subframes. The effective range is expanded when the power reduction in the predetermined subframes changes with the CRE bias value. Therefore, the effective range of RP-scheme is larger than that of ZP-scheme by setting an appropriate power reduction in the predetermined subframes.

  • On the Zeta Function of a Periodic-Finite-Type Shift

    Akiko MANADA  Navin KASHYAP  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1024-1031

    Periodic-finite-type shifts (PFT's) are sofic shifts which forbid the appearance of finitely many pre-specified words in a periodic manner. The class of PFT's strictly includes the class of shifts of finite type (SFT's). The zeta function of a PFT is a generating function for the number of periodic sequences in the shift. For a general sofic shift, there exists a formula, attributed to Manning and Bowen, which computes the zeta function of the shift from certain auxiliary graphs constructed from a presentation of the shift. In this paper, we derive an interesting alternative formula computable from certain “word-based graphs” constructed from the periodically-forbidden word description of the PFT. The advantages of our formula over the Manning-Bowen formula are discussed.

  • High Precision Analog Data Acquisition System with Signal Transformer Isolation Technique

    Yoshihiro AKEBOSHI  Seiichi SAITO  Hideyuki OHASHI  

     
    PAPER-Analog Signal Processing

      Vol:
    E96-A No:6
      Page(s):
    1421-1428

    In the field of Factory Automation (FA), process control, and Supervisory Control and Data Acquisition (SCADA), an analog data acquisition system using isolation transformers is commonly used to measure and record analog signals through isolated inputs. In order to improve the input precision of the acquisition system, circuit techniques and a design method of the analog frontend circuit with the signal transformers are proposed in this paper. A circuit technique to compensate for the droop of the pulse signal due to the characteristics of the signal transformer is employed. Also, a numerical analysis of a non-linear circuit equation, which represents a behavior of the core saturation of the signal transformer, is performed in order to determine the parameters of the circuit. Using a small signal transformer, dedicatedly developed for this acquisition system, the performance of the precision achieved for the linearity error is experimentally confirmed within +0.0204%/-0.0215%.

  • Networked Control of Uncertain Systems over Data Rate Limited and Lossy Channels

    Kunihisa OKANO  Hideaki ISHII  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    853-860

    This paper studies stabilization of uncertain systems over finite data rate and lossy channels. Limitations on data rate and packet loss probability are derived, characterized by the product of the eigenvalues of the plant. It is worth noting that even if we assume the most conservative plant dynamics, existing limitations for nominal plants are looser than those given in this paper. This fact implies that plant uncertainties cause strictly higher requirements in communication. We consider linear discrete-time systems with parametric uncertainties and employ uniform quantizers, which have the simplest quantization structure. Under the setup, a necessary condition and a sufficient condition for stability are derived. In particular, for scalar plants case, the conditions are exact. They coincide with the existing results for nominal plants as a special case and hence generalize them to the uncertain case.

  • Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting

    Ning XIE  Hirotaka HACHIYA  Masashi SUGIYAMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:5
      Page(s):
    1134-1144

    Oriental ink painting, called Sumi-e, is one of the most distinctive painting styles and has attracted artists around the world. Major challenges in Sumi-e simulation are to abstract complex scene information and reproduce smooth and natural brush strokes. To automatically generate such strokes, we propose to model the brush as a reinforcement learning agent, and let the agent learn the desired brush-trajectories by maximizing the sum of rewards in the policy search framework. To achieve better performance, we provide elaborate design of actions, states, and rewards specifically tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through experiments on Sumi-e simulation.

  • MPI/OpenMP Hybrid Parallel Inference Methods for Latent Dirichlet Allocation – Approximation and Evaluation

    Shotaro TORA  Koji EGUCHI  

     
    PAPER-Advanced Search

      Vol:
    E96-D No:5
      Page(s):
    1006-1015

    Recently, probabilistic topic models have been applied to various types of data, including text, and their effectiveness has been demonstrated. Latent Dirichlet allocation (LDA) is a well known topic model. Variational Bayesian inference or collapsed Gibbs sampling is often used to estimate parameters in LDA; however, these inference methods incur high computational cost for large-scale data. Therefore, highly efficient technology is needed for this purpose. We use parallel computation technology for efficient collapsed Gibbs sampling inference for LDA. We assume a symmetric multiprocessing (SMP) cluster, which has been widely used in recent years. In prior work on parallel inference for LDA, either MPI or OpenMP has often been used alone. For an SMP cluster, however, it is more suitable to adopt hybrid parallelization that uses message passing for communication between SMP nodes and loop directives for parallelization within each SMP node. We developed an MPI/OpenMP hybrid parallel inference method for LDA, and evaluated the performance of the inference under various settings of an SMP cluster. We further investigated the approximation that controls the inter-node communications, and found out that it achieved noticeable increase in inference speed while maintaining inference accuracy.

  • Partitioned-Tree Nested Loop Join: An Efficient Join for Spatio-Temporal Interval Join

    Jinsoo LEE  Wook-Shin HAN  Jaewha KIM  Jeong-Hoon LEE  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:5
      Page(s):
    1206-1210

    A predictive spatio-temporal interval join finds all pairs of moving objects satisfying a join condition on future time interval and space. In this paper, we propose a method called PTJoin. PTJoin partitions the inner index into small sub-trees and performs the join process for each sub-tree to reduce the number of disk page accesses for each window search. Furthermore, to reduce the number of pages accessed by consecutive window searches, we partition the index so that overlapping index pages do not belong to the same partition. Our experiments show that PTJoin reduces the number of page accesses by up to an order of magnitude compared to Interval_STJoin [9], which is the state-of-the-art solution, when the buffer size is small.

  • Energy-Efficient Cooperative Spectrum Sensing with QoS Guarantee in Cognitive Radio Networks

    Hang HU  Youyun XU  Ning LI  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:5
      Page(s):
    1222-1225

    A novel and energy-efficient algorithm with Quality-of-Service (QoS) guarantee is proposed for cooperative spectrum sensing (CSS) with soft information fusion and hard information fusion. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of secondary users (SUs), it is shown that the optimal number of SUs is related to the price of these QoS requirements.

  • A 1.5 Gb/s Highly Parallel Turbo Decoder for 3GPP LTE/LTE-Advanced

    Yun CHEN  Xubin CHEN  Zhiyuan GUO  Xiaoyang ZENG  Defeng HUANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E96-B No:5
      Page(s):
    1211-1214

    A highly parallel turbo decoder for 3GPP LTE/LTE-Advanced systems is presented. It consists of 32 radix-4 soft-in/soft-out (SISO) decoders. Each SISO decoder is based on the proposed full-parallel sliding window (SW) schedule. Implemented in a 0.13 µm CMOS technology, the proposed design occupies 12.96 mm2 and achieves 1.5 Gb/s while decoding size-6144 blocks with 5.5 iterations. Compared with conventional SW schedule, the throughput is improved by 30–76% with 19.2% area overhead and negligible energy overhead.

  • Saliency Density and Edge Response Based Salient Object Detection

    Huiyun JING  Qi HAN  Xin HE  Xiamu NIU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:5
      Page(s):
    1243-1246

    We propose a novel threshold-free salient object detection approach which integrates both saliency density and edge response. The salient object with a well-defined boundary can be automatically detected by our approach. Saliency density and edge response maximization is used as the quality function to direct the salient object discovery. The global optimal window containing a salient object is efficiently located through the proposed saliency density and edge response based branch-and-bound search. To extract the salient object with a well-defined boundary, the GrabCut method is applied, initialized by the located window. Experimental results show that our approach outperforms the methods only using saliency or edge response and achieves a comparable performance with the best state-of-the-art method, while being without any threshold or multiple iterations of GrabCut.

  • Dictionary Learning with Incoherence and Sparsity Constraints for Sparse Representation of Nonnegative Signals

    Zunyi TANG  Shuxue DING  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E96-D No:5
      Page(s):
    1192-1203

    This paper presents a method for learning an overcomplete, nonnegative dictionary and for obtaining the corresponding coefficients so that a group of nonnegative signals can be sparsely represented by them. This is accomplished by posing the learning as a problem of nonnegative matrix factorization (NMF) with maximization of the incoherence of the dictionary and of the sparsity of coefficients. By incorporating a dictionary-incoherence penalty and a sparsity penalty in the NMF formulation and then adopting a hierarchically alternating optimization strategy, we show that the problem can be cast as two sequential optimal problems of quadratic functions. Each optimal problem can be solved explicitly so that the whole problem can be efficiently solved, which leads to the proposed algorithm, i.e., sparse hierarchical alternating least squares (SHALS). The SHALS algorithm is structured by iteratively solving the two optimal problems, corresponding to the learning process of the dictionary and to the estimating process of the coefficients for reconstructing the signals. Numerical experiments demonstrate that the new algorithm performs better than the nonnegative K-SVD (NN-KSVD) algorithm and several other famous algorithms, and its computational cost is remarkably lower than the compared algorithms.

  • Distributed Power Control Network and Green Building Test-Bed for Demand Response in Smart Grid

    Kei SAKAGUCHI  Van Ky NGUYEN  Yu TAO  Gia Khanh TRAN  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    896-907

    It is known that demand and supply power balancing is an essential method to operate power delivery system and prevent blackouts caused by power shortage. In this paper, we focus on the implementation of demand response strategy to save power during peak hours by using Smart Grid. It is obviously impractical with centralized power control network to realize the real-time control performance, where a single central controller measures the huge metering data and sends control command back to all customers. For that purpose, we propose a new architecture of hierarchical distributed power control network which is scalable regardless of the network size. The sub-controllers are introduced to partition the large system into smaller distributed clusters where low-latency local feedback power control loops are conducted to guarantee control stability. Furthermore, sub-controllers are stacked up in an hierarchical manner such that data are fed back layer-by-layer in the inbound while in the outbound control responses are decentralized in each local sub-controller for realizing the global objectives. Numerical simulations in a realistic scenario of up to 5000 consumers show the effectiveness of the proposed scheme to achieve a desired 10% peak power saving by using off-the-shelf wireless devices with IEEE802.15.4g standard. In addition, a small-scale power control system for green building test-bed is implemented to demonstrate the potential use of the proposed scheme for power saving in real life.

  • Experimental Evaluation of Ultra Wideband Wireless Links within a Spacecraft for Replacing Wired Interface Buses

    Shinichiro HAMADA  Atsushi TOMIKI  Tomoaki TODA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    927-934

    A use of ultra wideband (UWB) technology within spacecrafts has been proposed with a view to partially replacing wired interface buses with wireless connections. Adoption of wireless technologies within the spacecrafts could contribute to reduction in cable weight (and launching cost as a result), reduction in the cost of manufacture, more flexibility in layout of spacecraft subsystems, and reliable connections at rotary, moving, and sliding joints. However, multipath propagation in semi-closed conductive enclosures, such as spacecrafts, restricts the link performance. In this paper, UWB and narrowband propagation were measured in a UWB frequency band (from 3.1 to 10.6 GHz, the full-band UWB approved in the United States) within a small spacecrafts and a shield box of the same size. While narrowband propagation resulted in considerable spatial variations in propagation gain due to interferences caused by multipath environments, UWB yielded none. This implies that the UWB systems have an advantage over narrowband from a viewpoint of reducing fading margins. Throughputs exceeding 80 Mb/s were obtained by means of commercially-available UWB devices in the spacecraft. Path gains and throughputs were also measured for various antenna settings and polarizations. Polarization configurations were found to produce almost no effect on average power delay profiles and substantially small effects on the throughputs. Significantly long delay spreads and thus limited link performance are caused by a conductive enclosure (the shield box) without apertures on the surfaces. Even in such an environment, it was found that delay spreads can be suppressed by partially paneling a radio absorber on the inner surfaces. More than 96 Mb/s throughputs were attained when the absorber panel covered typically 4% of the total inner surface area.

  • Transmission Line Coupler Design and Mixer-Based Receiver for Dicode Partial Response Communications

    Tsutomu TAKEYA  Tadahiro KURODA  

     
    PAPER-Circuit Theory

      Vol:
    E96-A No:5
      Page(s):
    940-946

    This paper presents a method of designing transmission line couplers (TLCs) and a mixer-based receiver for dicode partial response communications. The channel design method results in the optimum TLC design. The receiver with mixers and DC balancing circuits reduces the threshold control circuits and digital circuits to decode dicode partial response signals. Our techniques enable low inter-symbol interference (ISI) dicode partial response communications without three level decision circuits and complex threshold control circuits. The techniques were evaluated in a simulation with an EM solver and a transistor level simulation. The circuit was designed in the 90-nm CMOS process. The simulation results show 12-Gb/s operation and 52mW power consumption at 1.2V.

  • Efficient Top-k Document Retrieval for Long Queries Using Term-Document Binary Matrix – Pursuit of Enhanced Informational Search on the Web –

    Etsuro FUJITA  Keizo OYAMA  

     
    PAPER-Advanced Search

      Vol:
    E96-D No:5
      Page(s):
    1016-1028

    With the successful adoption of link analysis techniques such as PageRank and web spam filtering, current web search engines well support “navigational search”. However, due to the use of a simple conjunctive Boolean filter in addition to the inappropriateness of user queries, such an engine does not necessarily well support “informational search”. Informational search would be better handled by a web search engine using an informational retrieval model combined with enhancement techniques such as query expansion and relevance feedback. Moreover, the realization of such an engine requires a method to prosess the model efficiently. In this paper we propose a novel extension of an existing top-k query processing technique to improve search efficiency. We add to it the technique utilizing a simple data structure called a “term-document binary matrix,” resulting in more efficient evaluation of top-k queries even when the queries have been expanded. We show on the basis of experimental evaluation using the TREC GOV2 data set and expanded versions of the evaluation queries attached to this data set that the proposed method can speed up evaluation considerably compared with existing techniques especially when the number of query terms gets larger.

  • Energy Harvesting Technique by Using Novel Voltage Multiplier Circuits and Passive Devices

    Hamid JABBAR  Sungju LEE  Kyeon HUR  Taikyeong JEONG  

     
    BRIEF PAPER

      Vol:
    E96-C No:5
      Page(s):
    726-729

    For a development of energy harvesting system, the fact of radio waves and ambient RF (Radio Frequency) sources, including passive devices along with novel circuits, are very closely related to mobile charging devices and energy storage system. The use of schottky diode and voltage multiplier circuits to express on the ambient RF sources surrounding the system is one way that has seen a sudden rise in use for energy harvesting. Practically speaking, the RF and ambient sources can be provided by active and passive devices such as inductors, capacitors, diode, etc. In this paper, we present a schottky based voltage multiplier circuits for mobile charging device which integrate the power generation module with radio wave generation module. We also discuss that multi-stage schematic, e.g., three-stage schottky diode based voltage multiplier circuits, for a continuing effort on energy harvesting system.

  • Maximum Likelihood Approach for RFID Tag Cardinality Estimation under Capture Effect and Detection Errors

    Chuyen T. NGUYEN  Kazunori HAYASHI  Megumi KANEKO  Hideaki SAKAI  

     
    PAPER-Network

      Vol:
    E96-B No:5
      Page(s):
    1122-1129

    Cardinality estimation schemes of Radio Frequency IDentification (RFID) tags using Framed Slotted ALOHA (FSA) based protocol are studied in this paper. Not as same as previous estimation schemes, we consider tag cardinality estimation problem under not only detection errors but also capture effect, where a tag's IDentity (ID) might not be detected even in a singleton slot, while it might be identified even in a collision slot due to the fading of wireless channels. Maximum Likelihood (ML) approach is utilized for the estimation of the detection error probability, the capture effect probability, and the tag cardinality. The performance of the proposed method is evaluated under different system parameters via computer simulations to show the method's effectiveness comparing to other conventional approaches.

  • Noise Suppression Methods Using Spiral with PGS in PCB

    Tong-Ho CHUNG  Jong-Gwan YOOK  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E96-C No:5
      Page(s):
    752-754

    In this paper, several spiral inductors with various ground clearance structures and turns were investigated to achieve noise suppression up to the fourth harmonic (3.2 GHz) regime of DDR3-1600. Their performances were characterized in terms of their capability to effectively suppress simultaneous switching noise (SSN) in the frequency region of interest. For a wider noise suppression bandwidth, a spiral inductor with large ground clearance, which provides a high self resonance frequency (SRF) as well as high inductances, was implemented. The proposed spiral inductor exhibited good noise suppression characteristics in the frequency domain and achieved 50% voltage fluctuation reduction in the time domain, compared to the identical 4-turn spiral without pattern ground structure.

  • MSE-Based Robust Precoder Design in Multicell Downlink Systems

    Cong-gai LI  Chen HE  Ling-ge JIANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1017-1020

    To mitigate the inter-cell interference in multicell downlink systems, this letter consider the robust precoder design for multicell cooperation where the knowledge of channel state available at the base station is imperfect. Assuming that imperfect channel state information (CSI) can be exchanged among cells but with no data sharing, we investigate the worst-case performance optimization problem with bounded CSI error. Our objective is to minimize the weighted sum mean-square-error (MSE) subject to per-base-station power constraints. A distributed solution is obtained by reformulating the upper bound of MSE and exploiting the Lagrangian method for the optimal problem. Simulation results demonstrate that the proposed algorithm is robust to guarantee the worst-case sum rate performance and has lower computational complexity than the SINR-based design.

  • Control of Interfacial Reaction of HfO2/Ge Structure by Insertion of Ta Oxide Layer

    Kuniaki HASHIMOTO  Akio OHTA  Hideki MURAKAMI  Seiichiro HIGASHI  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    674-679

    As means to control interface reactions between HfO2 and Ge(100), chemical vapor deposition (CVD) of ultrathin Ta-rich oxide using Tri (tert-butoxy) (tert-butylimido) tantalum (Ta-TTT) on chemically-cleaned Ge(100) has been conducted prior to atomic-layer controlled CVD of HfO2 using tetrakis (ethylmethylamino) hafnium (TEMA-Hf) and O3. The XPS analysis of chemical bonding features of the samples after the post deposition N2 annealing at 300 confirms the formation of TaGexOy and the suppression of the interfacial GeO2 layer growth. The energy band structure of HfO2/TaGexOy/Ge was determined by the combination of the energy bandgaps of HfO2 and TaGexOy measured from energy loss signals of O 1s photoelectrons and from optical absorption spectra and the valence band offsets at each interface measured from valence band spectra. From the capacitance-voltage (C-V) curves of Pt-gate MIS capacitors with different HfO2 thicknesses, the thickness reduction of TaGexOy with a relative dielectric constant of 9 is a key to obtain an equivalent SiO2 thickness (EOT) below 0.7 nm.

6081-6100hit(21534hit)