The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

6181-6200hit(21534hit)

  • MIMO Receiver with Antenna Subset Selection: Algorithm and Hardware Implementation

    Kazuhiko MITSUYAMA  Tetsuomi IKEDA  Tomoaki OHTSUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:4
      Page(s):
    1039-1050

    Multiple-input multiple-output (MIMO) systems with antenna selection are practical in that they can alleviate the computational complexity at the receiver and achieve good reception performance. Channel correlation, not just carrier-to-noise ratio (CNR), has a great impact on reception performance in MIMO channels. We propose a practical receive antenna subset selection algorithm with reduced complexity that uses the condition number of the partial channel matrix and a predetermined CNR threshold. This paper describes the algorithm and its performance evaluation by both computer simulation and indoor experiments using a prototype receiver and received signals obtained in an actual mobile outdoor experiment. The results confirm that our proposed method provides good bit error rate performance by setting the CNR threshold properly.

  • Efficient XML Retrieval Service with Complete Path Representation

    Hsu-Kuang CHANG  King-Chu HUNG  I-Chang JOU  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:4
      Page(s):
    906-917

    Compiling documents in extensible markup language (XML) increasingly requires access to data services which provide both rapid response and the precise use of search engines. Efficient data service should be based on a skillful representation that can support low complexity and high precision search capabilities. In this paper, a novel complete path representation (CPR) associated with a modified inverted index is presented to provide efficient XML data services, where queries can be versatile in terms of predicates. CPR can completely preserve hierarchical information, and the new index is used to save semantic information. The CPR approach can provide template-based indexing for fast data searches. An experiment is also conducted for the evaluation of the CPR approach.

  • Mode-Matching Analysis of a Coaxially-Driven Finite Monopole Based on a Variable Bound Approach

    Young Seung LEE  Seung Keun PARK  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:4
      Page(s):
    994-1000

    The problem of a finite monopole antenna driven by a coaxial cable is revisited. On the basis of a variable bound approach, the radiated field around a monopole antenna can be represented in terms of the discrete modal summation. This theoretical model allows us to avoid the difficulties experienced when dealing with integral equations having different wavenumber spectra and ensures a solution in a convergent series form so that it is numerically efficient. The behaviors of the input admittance and the current distribution to characterize the monopole antenna are shown for different coaxial-antenna geometries and also compared with other existing results.

  • Robust and Accurate Image Expansion Algorithm Based on Double Scattered Range Points Migration for UWB Imaging Radars

    Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E96-B No:4
      Page(s):
    1061-1069

    UWB (Ultra Wideband) radar offers great promise for advanced near field sensors due to its high range resolution. In particular, it is suitable for rescue or resource exploration robots, which need to identify a target in low visibility or acoustically harsh environments. Recently, radar algorithms that actively coordinate multiple scattered components have been developed to enhance the imaging range beyond what can be achieved by synthesizing a single scattered component. Although we previously developed an accurate algorithm for imaging shadow regions with low computational complexity using derivatives of observed ranges for double scattered signals, the algorithm yields inaccurate images under the severe interference situations that occur with complex-shaped or multiple objects or in noisy environments. This is because small range fluctuations arising from interference or random noises can produce non-negligible image degradation owing to inaccuracy in the range derivative calculation. As a solution to this difficulty, this paper proposes a novel imaging algorithm that does not use the range derivatives of doubly scattered signals, and instead extracts a feature of expansive distributions of the observed ranges, using a unique property inherent to the doubly scattering mechanism. Numerical simulation examples of complex-shaped or multiple targets are presented to demonstrate the distinct advantage of the proposed algorithm which creates more accurate images even for complicated objects or in noisy situations.

  • Multi-Layer Virtual Slide Scanning System with Multi-Focus Image Fusion for Cytopathology and Image Diagnosis Open Access

    Hiroyuki NOZAKA  Tomisato MIURA  Zhongxi ZHENG  

     
    PAPER-Diagnostic Systems

      Vol:
    E96-D No:4
      Page(s):
    856-863

    Objective: The virtual slides are high-magnification whole digital images of histopathological tissue sections. The existing virtual slide system, which is optimized for scanning flat and smooth plane slides such as histopathological paraffin-embedded tissue sections, but is unsuitable for scanning irregular plane slides such as cytological smear slides. This study aims to develop a virtual slide system suitable for cytopathology slide scanning and to evaluate the effectiveness of multi-focus image fusion (MF) in cytopathological diagnosis. Study Design: We developed a multi-layer virtual slide scanning system with MF technology. Tumors for this study were collected from 21 patients diagnosed with primary breast cancer. After surgical extraction, smear slide for cytopathological diagnosis were manufactured by the conventional stamp method, fine needle aspiration method (FNA), and tissue washing method. The stamp slides were fixed in 95% ethanol. FNA and tissue washing samples were fixed in CytoRich RED Preservative Fluid, a liquid-based cytopathology (LBC). These slides were stained with Papanicolaou stain, and scanned by virtual slide system. To evaluate the suitability of MF technology in cytopathological diagnosis, we compared single focus (SF) virtual slide with MF virtual slide. Cytopathological evaluation was carried out by 5 pathologists and cytotechnologists. Results: The virtual slide system with MF provided better results than the conventional SF virtual slide system with regard to viewing inside cell clusters and image file size. Liquid-based cytology was more suitable than the stamp method for virtual slides with MF. Conclusion: The virtual slide system with MF is a useful technique for the digitization in cytopathology, and this technology could be applied to tele-cytology and e-learning by virtual slide system.

  • A Proposal of Spatio-Temporal Reconstruction Method Based on a Fast Block-Iterative Algorithm Open Access

    Tatsuya KON  Takashi OBI  Hideaki TASHIMA  Nagaaki OHYAMA  

     
    PAPER-Medical Image Processing

      Vol:
    E96-D No:4
      Page(s):
    819-825

    Parametric images can help investigate disease mechanisms and vital functions. To estimate parametric images, it is necessary to obtain the tissue time activity curves (tTACs), which express temporal changes of tracer activity in human tissue. In general, the tTACs are calculated from each voxel's value of the time sequential PET images estimated from dynamic PET data. Recently, spatio-temporal PET reconstruction methods have been proposed in order to take into account the temporal correlation within each tTAC. Such spatio-temporal algorithms are generally quite computationally intensive. On the other hand, typical algorithms such as the preconditioned conjugate gradient (PCG) method still does not provide good accuracy in estimation. To overcome these problems, we propose a new spatio-temporal reconstruction method based on the dynamic row-action maximum-likelihood algorithm (DRAMA). As the original algorithm does, the proposed method takes into account the noise propagation, but it achieves much faster convergence. Performance of the method is evaluated with digital phantom simulations and it is shown that the proposed method requires only a few reconstruction processes, thereby remarkably reducing the computational cost required to estimate the tTACs. The results also show that the tTACs and parametric images from the proposed method have better accuracy.

  • Ultimate Boundedness of Nonlinear Singularly Perturbed System with Measurement Noise

    Kyung-In KANG  Kyun-Sang PARK  Jong-Tae LIM  

     
    LETTER-Systems and Control

      Vol:
    E96-A No:4
      Page(s):
    826-829

    In this letter, we consider the ultimate boundedness of the singularly perturbed system with measurement noise. The composite controller is commonly used to regulate the singularly perturbed system. However, in the presence of measurement noise, the composite controller does not guarantee the ultimate boundedness of the singularly perturbed system. Thus, we propose the modified composite controller to show the ultimate boundedness of the singularly perturbed system with measurement noise.

  • Parallel Acceleration Scheme for Monte Carlo Based SSTA Using Generalized STA Processing Element

    Hiroshi YUASA  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    473-481

    We propose a novel acceleration scheme for Monte Carlo based statistical static timing analysis (MC-SSTA). MC-SSTA, which repeatedly executes ordinary STA using a set of randomly generated gate delay samples, is widely accepted as an accuracy reference. A large number of random samples, however, should be processed to obtain accurate delay distributions, and software implementation of MC-SSTA, therefore, takes an impractically long processing time. In our approach, a generalized hardware module, the STA processing element (STA-PE), is used for the delay evaluation of a logic gate, and netlist-specific information is delivered in the form of instructions from an SRAM. Multiple STA-PEs can be implemented for parallel processing, while a larger netlist can be handled if only a larger SRAM area is available. The proposed scheme is successfully implemented on Altera's Arria II GX EP2AGX125EF35C4 device in which 26 STA-PEs and a 624-port Mersenne Twister-based random number generator run in parallel at a 116 MHz clock rate. A speedup of far more than10 is achieved compared to conventional methods including GPU implementation.

  • A Low Power Multimedia Processor Implementing Dynamic Voltage and Frequency Scaling Technique and Fast Motion Estimation Algorithm Called “Adaptively Assigned Breaking-Off Condition (A2BC)”

    Tadayoshi ENOMOTO  Nobuaki KOBAYASHI  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    424-432

    A motion estimation (ME) multimedia processor was developed by employing dynamic voltage and frequency scaling (DVFS) technique to greatly reduce the power dissipation. To make full use of the advantages of DVFS technique, a fast motion estimation (ME) algorithm was also developed. It can adaptively predict the optimum supply voltage and the optimum clock frequency before ME process starts for each macro-block for encoding. Power dissipation of the 90-nm CMOS DVFS controlled multimedia processor, which contained an absolute difference accumulator as well as a small on-chip DC/DC level converter, a minimum value detector and DVFS controller, was reduced to 38.48 µW, which was only 3.261% that of a conventional multimedia processor.

  • An Improved Face Clustering Method Using Weighted Graph for Matched SIFT Keypoints in Face Region

    Ji-Soo KEUM  Hyon-Soo LEE  

     
    LETTER-Pattern Recognition

      Vol:
    E96-D No:4
      Page(s):
    967-971

    In this paper, we propose an improved face clustering method using a weighted graph-based approach. We combine two parameters as the weight of a graph to improve clustering performance. One is average similarity, which is calculated with two constraints of geometric and symmetric properties, and the other is a newly proposed parameter called the orientation matching ratio, which is calculated from orientation analysis for matched keypoints in the face region. According to the results of face clustering for several datasets, the proposed method shows improved results compared to the previous method.

  • Survey of IPX (IP eXchange) as an Emerging International Interconnection between Telecommunication Networks

    Takaaki MORIYA  

     
    SURVEY PAPER-Network

      Vol:
    E96-B No:4
      Page(s):
    927-938

    The widespread adoption of IP-based telecommunication core networks is leading to a paradigm shift in international interconnection where the traditional Time-Division Multiplexing (TDM) interconnection between telecommunication networks is being replaced by IP interconnection. IP eXchange (IPX) is an emerging paradigm in international IP interconnection that has novel requirements, such as an end-to-end Quality of Service (QoS) guarantee across multiple carriers. IPX is a future direction for international telecommunications, but it is not easy to understand the overall concept of IPX because it is derived from a wide variety of services, technical knowledge, and telecommunication backgrounds. The confusion and complexity of the technical elements hinder the development of IPX. Thus, this paper clarifies the state-of-the-art technical elements from an IPX perspective and discusses ongoing challenges and emerging services on IPX, particularly end-to-end QoS, Voice over IP issues, IP Multimedia Subsystem (IMS) interworking, and Long Term Evolution (LTE) roaming. This paper also surveys published academic research studies that were not focused primarily on IPX but which are likely to provide potential solutions to the challenges.

  • Design of CMOS Low-Noise Analog Circuits for Particle Detector Pixel Readout LSIs

    Fei LI  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    568-576

    This paper describes the analysis and design of low-noise analog circuits for a new architecture readout LSI, Qpix. In contrast to conventional readout LSIs using TOT method, Qpix measures deposited charge directly as well as time information. A preamplifier with a two-stage op amp and current-copy output buffers is proposed to realize these functions. This preamplifier is configured to implement a charge sensitive amplifier (CSA) and a trans-impedance amplifier (TIA). Design issues related to CSA are analyzed, which includes gain requirement of the op amp, stability and compensation of the two-stage cascode op amp, noise performance estimation, requirement for the resolution of the ADC and time response. The offset calibration method in the TIA to improve the charge detecting sensitivity is also presented. Also, some design principles for these analog circuits are presented. In order to verify the theoretical analysis, a 400-pixel high speed readout LSI: Qpix v.1 has been designed and fabricated in 180 nm CMOS process. Calculations and SPICE simulations show that the total output noise is about 0.31 mV (rms) at the output of the CSA and the offset voltage is less than 4 mV at the output of the TIA. These are attractive performances for experimental particle detector using Qpix v.1 chip as its readout LSI.

  • Performance Improvement of the Analog ANC Circuit for a Duct by Insertion of an All-Pass Filter

    Tatsuki HYODO  Gaku ASAKURA  Kiwamu TSUKADA  Masashi KATO  

     
    LETTER-Noise and Vibration

      Vol:
    E96-A No:4
      Page(s):
    824-825

    This letter proposes an analog active noise control (ANC) circuit with an all-pass filter (APF). To improve performance of the previously reported analog ANC circuit, we inserted an APF to the circuit in order to fit phases of a noise and an electrical signal in the circuit. As a result, we confirmed improvement of the noise canceling effect of the analog ANC circuit.

  • Self Synchronous Circuits for Robust Operation in Low Voltage and Soft Error Prone Environments

    Benjamin DEVLIN  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    518-527

    In this paper we show that self synchronous circuits can provide robust operation in both soft error prone and low voltage operating environments. Self synchronous circuits are shown to be self checking, where a soft error will either cause a detectable error or halt operation of the circuit. A watchdog circuit is proposed to autonomously detect dual-rail '11' errors and prevent propagation, with measurements in 65 nm CMOS showing seamless operation from 1.6 V to 0.37 V. Compared to a system without the watchdog circuit size and energy-per-operation is increased 6.9% and 16% respectively, while error tolerance to noise is improved 83% and 40% at 1.2 V and 0.4 V respectively. A circuit that uses the dual-pipeline circuit style as redundancy against permanent faults is also presented and 40 nm CMOS measurement results shows correct operation with throughput of 1.2 GHz and 810 MHz at 1.1 V before and after disabling a faulty pipeline stage respectively.

  • Investigation on Transmission Power Control Suitable for Heterogeneous Network Employing Cell Range Expansion in LTE-Advanced Uplink

    Akihito MORIMOTO  Nobuhiko MIKI  Hiroyuki ISHII  Daisuke NISHIKAWA  Yukihiko OKUMURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:4
      Page(s):
    1051-1060

    In Long-Term Evolution (LTE)-Advanced, heterogeneous networks where femtocells and picocells are overlaid onto macrocells are being extensively discussed in addition to traditional well-planned macrocell deployment to improve further the system throughput. In heterogeneous networks, cell range expansion (CRE), which is a technique for expanding the cell radius of picocells by biasing the handover criteria, e.g., the downlink received signal power, is applied so that the UEs will more frequently select the picocells. This paper investigates a fractional transmission power control (TPC) method suitable for the heterogeneous networks that employ CRE in the LTE-Advanced uplink and evaluates the cell-edge user throughput and cell throughput performance. Simulation results (2-8 picocells and 25 (30) UEs are located within one macrocell with a uniform (cluster) distribution, the difference in transmission power between the macro and picocells is 16 dB, and the Typical Urban and Pedestrian-A channel models are employed) show that almost the same cell-edge user throughput is obtained by setting an appropriate difference in the target received signal power between the macro and picocells according to the CRE offset value.

  • A Sub-100 mW Dual-Core HOG Accelerator VLSI for Parallel Feature Extraction Processing for HDTV Resolution Video

    Kosuke MIZUNO  Kenta TAKAGI  Yosuke TERACHI  Shintaro IZUMI  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    433-443

    This paper describes a Histogram of Oriented Gradients (HOG) feature extraction accelerator that features a VLSI-oriented HOG algorithm with early classification in Support Vector Machine (SVM) classification, dual core architecture for parallel feature extraction and multiple object detection, and detection-window-size scalable architecture with reconfigurable MAC array for processing objects of several shapes. To achieve low-power consumption for mobile applications, early classification reduces the amount of computations in SVM classification efficiently with no accuracy degradation. The dual core architecture enables parallel feature extraction in one frame for high-speed or low-power computing and detection of multiple objects simultaneously with low power consumption by HOG feature sharing. Objects of several shapes, a vertically long object, a horizontally long object, and a square object, can be detected because of cooperation between the two cores. The proposed methods provide processing capability for HDTV resolution video (19201080 pixels) at 30 frames per second (fps). The test chip, which has been fabricated using 65 nm CMOS technology, occupies 4.22.1 mm2 containing 502 Kgates and 1.22 Mbit on-chip SRAMs. The simulated data show 99.5 mW power consumption at 42.9 MHz and 1.1 V.

  • Robustness in Supervised Learning Based Blind Automatic Modulation Classification

    Md. Abdur RAHMAN  Azril HANIZ  Minseok KIM  Jun-ichi TAKADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:4
      Page(s):
    1030-1038

    Automatic modulation classification (AMC) involves extracting a set of unique features from the received signal. Accuracy and uniqueness of the features along with the appropriate classification algorithm determine the overall performance of AMC systems. Accuracy of any modulation feature is usually limited by the blindness of the signal information such as carrier frequency, symbol rate etc. Most papers do not sufficiently consider these impairments and so do not directly target practical applications. The AMC system proposed herein is trained with probable input signals, and the appropriate decision tree should be chosen to achieve robust classification. Six unique features are used to classify eight analog and digital modulation schemes which are widely used by low frequency mobile emergency radios around the globe. The Proposed algorithm improves the classification performance of AMC especially for the low SNR regime.

  • Computational Models of Human Visual Attention and Their Implementations: A Survey Open Access

    Akisato KIMURA  Ryo YONETANI  Takatsugu HIRAYAMA  

     
    INVITED SURVEY PAPER

      Vol:
    E96-D No:3
      Page(s):
    562-578

    We humans are easily able to instantaneously detect the regions in a visual scene that are most likely to contain something of interest. Exploiting this pre-selection mechanism called visual attention for image and video processing systems would make them more sophisticated and therefore more useful. This paper briefly describes various computational models of human visual attention and their development, as well as related psychophysical findings. In particular, our objective is to carefully distinguish several types of studies related to human visual attention and saliency as a measure of attentiveness, and to provide a taxonomy from several viewpoints such as the main objective, the use of additional cues and mathematical principles. This survey finally discusses possible future directions for research into human visual attention and saliency computation.

  • Interference Monitoring-Based Spectrum Management to Maximize White Space Utilization for Cognitive Radios

    Kazushi MURAOKA  Hiroto SUGAHARA  Masayuki ARIYOSHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:3
      Page(s):
    869-879

    For opportunistic spectrum access (OSA), spectrum management is a key function to effectively utilize white space without causing harmful interference to incumbent receivers. Geo-location database approaches using radio propagation estimation have been regarded as practical spectrum management methods. However, propagation models inevitably fail to accurately estimate the path loss in actual radio environments, resulting in estimation error of carrier to interference ratio (CIR) of the incumbent receivers. This could prevent white space from being efficiently utilized, because the allowable transmit power of the opportunistic system has to be limited to keep the CIR at the required level. To improve the accuracy of CIR estimation, we propose the new concept of Interference Monitoring which works in combination with spectrum management. In this method, a monitoring node located near the incumbent receivers actually measures both the interference signals and the incumbent signals. Using the measurement results, the CIR estimates are corrected based on the minimum mean square error (MMSE) criterion. The proposed Interference Monitoring can be extended to establish cooperation among multiple monitoring nodes and thus spatial diversity. Analytical evaluations assuming a simple cellular system model show that Interference Monitoring can more accurately estimate CIR, and thus it can significantly increase the allowable transmit power. For an urban macro cell, Interference Monitoring with a single node achieved about a 6.5 dB increase in the transmit power; Cooperative Interference Monitoring with 4 nodes achieved about a 13.5 dB increase. Thus, Interference Monitoring-based spectrum management can maximize opportunities for white space utilization without imposing additional interference to the incumbent system.

  • Distributed Algorithm for End-to-End Rate Control with User-Level Utility in Communication Networks

    Hee-Tae ROH  Jang-Won LEE  

     
    LETTER-Network

      Vol:
    E96-B No:3
      Page(s):
    896-899

    In our previous work [2], we proposed a new concept of utility functions for rate control in communication networks. Unlike conventional utility-based rate control in which the utility function of each user is defined as a function of its transmitting data rate, in [2], we defined the utility function of each user as a function of not only its transmitting data rate but also it receiving data rate. The former is called a session-level utility function and the latter is called a user-level utility function. The user-level utility function reflects the satisfaction with the service of a user with two-way communication, which consists of transmitting and receiving sessions, better than the session-level utility function, since user's satisfaction depends on not only the satisfaction with its transmitting session but also that for its receiving session. In [2], an algorithm that required each user to know the exact utility function of its correspondent was developed. However, in some cases, this information might not be available due to some reasons such as security and privacy issues, and in such cases, the algorithm developed in [2] cannot be used. Hence, in this paper, we develop a new distributed algorithm that does not require each user to know the utility function of its correspondent. Numerical results show that our new algorithm, which does not require the utility information of the correspondent, converges to the same solution to that with the algorithm that requires the utility information of the correspondent.

6181-6200hit(21534hit)