The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

6141-6160hit(21534hit)

  • Modeling of Trench-Gate Type HV-MOSFETs for Circuit Simulation

    Takahiro IIZUKA  Kenji FUKUSHIMA  Akihiro TANAKA  Hideyuki KIKUCHIHARA  Masataka MIYAKE  Hans J. MATTAUSCH  Mitiko MIURA-MATTAUSCH  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E96-C No:5
      Page(s):
    744-751

    The trench-gate type high-voltage (HV) MOSFET is one of the variants of HV-MOSFET, typically with its utility segments lying on a larger power consumption domain, compared to planar HV-MOSFETs. In this work, the HiSIM_HV compact model, originally intended for planar LDMOSFETs, was adequately extended to accommodate trench-gate type HV-MOSFETs. The model formulation focuses on a closed-form description of the current path in the highly resistive drift region, specific to the trench-gate HV-MOSFETs. It is verified that the developed compact expression can capture the conductivity in the drift region, which varies with voltage bias and device technology such as trench width. The notable enhancement of current drivability can be accounted for by the electrostatic control exerted by the trench gate within the framework of this model.

  • A 1.5 Gb/s Highly Parallel Turbo Decoder for 3GPP LTE/LTE-Advanced

    Yun CHEN  Xubin CHEN  Zhiyuan GUO  Xiaoyang ZENG  Defeng HUANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E96-B No:5
      Page(s):
    1211-1214

    A highly parallel turbo decoder for 3GPP LTE/LTE-Advanced systems is presented. It consists of 32 radix-4 soft-in/soft-out (SISO) decoders. Each SISO decoder is based on the proposed full-parallel sliding window (SW) schedule. Implemented in a 0.13 µm CMOS technology, the proposed design occupies 12.96 mm2 and achieves 1.5 Gb/s while decoding size-6144 blocks with 5.5 iterations. Compared with conventional SW schedule, the throughput is improved by 30–76% with 19.2% area overhead and negligible energy overhead.

  • Saliency Density and Edge Response Based Salient Object Detection

    Huiyun JING  Qi HAN  Xin HE  Xiamu NIU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:5
      Page(s):
    1243-1246

    We propose a novel threshold-free salient object detection approach which integrates both saliency density and edge response. The salient object with a well-defined boundary can be automatically detected by our approach. Saliency density and edge response maximization is used as the quality function to direct the salient object discovery. The global optimal window containing a salient object is efficiently located through the proposed saliency density and edge response based branch-and-bound search. To extract the salient object with a well-defined boundary, the GrabCut method is applied, initialized by the located window. Experimental results show that our approach outperforms the methods only using saliency or edge response and achieves a comparable performance with the best state-of-the-art method, while being without any threshold or multiple iterations of GrabCut.

  • Efficient XML Retrieval Service with Complete Path Representation

    Hsu-Kuang CHANG  King-Chu HUNG  I-Chang JOU  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:4
      Page(s):
    906-917

    Compiling documents in extensible markup language (XML) increasingly requires access to data services which provide both rapid response and the precise use of search engines. Efficient data service should be based on a skillful representation that can support low complexity and high precision search capabilities. In this paper, a novel complete path representation (CPR) associated with a modified inverted index is presented to provide efficient XML data services, where queries can be versatile in terms of predicates. CPR can completely preserve hierarchical information, and the new index is used to save semantic information. The CPR approach can provide template-based indexing for fast data searches. An experiment is also conducted for the evaluation of the CPR approach.

  • A Second-Order All-Digital TDC with Low-Jitter Frequency Shift Oscillators and Dynamic Flipflops

    Toshihiro KONISHI  Keisuke OKUNO  Shintaro IZUMI  Masahiko YOSHIMOTO  Hiroshi KAWAGUCHI  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    546-552

    We present a small-area second-order all-digital time-to-digital converter (TDC) with two frequency shift oscillators (FSOs) comprising inverter chains and dynamic flipflops featuring low jitter. The proposed FSOs can maintain their phase states through continuous oscillation, unlike conventional gated ring oscillators (GROs) that are affected by transistor leakage. Our proposed FSOTDC is more robust and is eligible for all-digital TDC architectures in recent leaky processes. Low-jitter dynamic flipflops are adopted as a quantization noise propagator (QNP). A frequency mismatch occurring between the two FSOs can be canceled out using a least mean squares (LMS) filter so that second-order noise shaping is possible. In a standard 65-nm CMOS process, an SNDR of 61 dB is achievable at an input bandwidth of 500 kHz and a sampling rate of 16 MHz, where the respective area and power are 700 µm2 and 281 µW.

  • A Third-Order Switched-Current Delta-Sigma Modulator with Analog Error Cancellation Logic and Digital Comb Filter

    Guo-Ming SUNG  Ying-Tzu LAI  Yueh-Hung HOU  

     
    PAPER-Electronic Circuits

      Vol:
    E96-C No:4
      Page(s):
    595-603

    This paper presents a fully differential third-order (2-1) switched-current (SI) cascaded delta-sigma modulator (DSM), with an analog error cancellation logic circuit, and a digital decimation filter that is fabricated using 0.18-µm CMOS technology. The 2-1 architecture with only the quantizer input being fed into the second stage is introduced not only to reduce the circuit complexity, but also to be implemented easily using the switched-current approach. Measurements reveal that the dominant error is the quantization error of the second one-bit quantizer (e2). This error can be eliminated using an analog error cancellation logic circuit. In the proposed differential sample-and-hold circuit, low input impedance is presented with feedback and width-length adjustment in SI feedback memory cell (FMC); and that a coupled differential replicate (CDR) common-mode feedforward circuit (CMFF) is used to compensate the error of the current mirror. Also, measurements indicate that the signal-to-noise ratio (SNR), dynamic range (DR), effective number of bits (ENOB), power consumption and chip size are 67.3 dB, 69 dB, 10.9 bits, 12.3 mW, and 0.200.21 mm2, respectively, with a bandwidth of 40 kHz, a sampling rate of 10.24 MHz, an OSR of 128 and a supply voltage of 1.8 V.

  • Survey of IPX (IP eXchange) as an Emerging International Interconnection between Telecommunication Networks

    Takaaki MORIYA  

     
    SURVEY PAPER-Network

      Vol:
    E96-B No:4
      Page(s):
    927-938

    The widespread adoption of IP-based telecommunication core networks is leading to a paradigm shift in international interconnection where the traditional Time-Division Multiplexing (TDM) interconnection between telecommunication networks is being replaced by IP interconnection. IP eXchange (IPX) is an emerging paradigm in international IP interconnection that has novel requirements, such as an end-to-end Quality of Service (QoS) guarantee across multiple carriers. IPX is a future direction for international telecommunications, but it is not easy to understand the overall concept of IPX because it is derived from a wide variety of services, technical knowledge, and telecommunication backgrounds. The confusion and complexity of the technical elements hinder the development of IPX. Thus, this paper clarifies the state-of-the-art technical elements from an IPX perspective and discusses ongoing challenges and emerging services on IPX, particularly end-to-end QoS, Voice over IP issues, IP Multimedia Subsystem (IMS) interworking, and Long Term Evolution (LTE) roaming. This paper also surveys published academic research studies that were not focused primarily on IPX but which are likely to provide potential solutions to the challenges.

  • AspectQuery: A Method for Identification of Crosscutting Concerns in the Requirement Phase

    Chengwan HE  Chengmao TU  

     
    PAPER-Software Engineering

      Vol:
    E96-D No:4
      Page(s):
    897-905

    Identification of early aspects is the critical problem in aspect-oriented requirement engineering. But the representation of crosscutting concerns is various, which makes the identification difficult. To address the problem, this paper proposes the AspectQuery method based on goal model. We analyze four kinds of goal decomposition models, then summarize the main factors about identification of crosscutting concerns and conclude the identification rules based on a goal model. A goal is crosscutting concern when it satisfies one of the following conditions: i) the goal is contributed to realize one soft-goal; ii) parent goal of the goal is candidate crosscutting concern; iii) the goal has at least two parent goals. AspectQuery includes four steps: building the goal model, transforming the goal model, identifying the crosscutting concerns by identification rules, and composing the crosscutting concerns with the goals affected by them. We illustrate the AspectQuery method through a case study (a ticket booking management system). The results show the effectiveness of AspectQuery in identifying crosscutting concerns in the requirement phase.

  • A Scalable Communication-Induced Checkpointing Algorithm for Distributed Systems

    Alberto CALIXTO SIMON  Saul E. POMARES HERNANDEZ  Jose Roberto PEREZ CRUZ  Pilar GOMEZ-GIL  Khalil DRIRA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:4
      Page(s):
    886-896

    Communication-induced checkpointing (CIC) has two main advantages: first, it allows processes in a distributed computation to take asynchronous checkpoints, and secondly, it avoids the domino effect. To achieve these, CIC algorithms piggyback information on the application messages and take forced local checkpoints when they recognize potentially dangerous patterns. The main disadvantages of CIC algorithms are the amount of overhead per message and the induced storage overhead. In this paper we present a communication-induced checkpointing algorithm called Scalable Fully-Informed (S-FI) that attacks the problem of message overhead. For this, our algorithm modifies the Fully-Informed algorithm by integrating it with the immediate dependency principle. The S-FI algorithm was simulated and the result shows that the algorithm is scalable since the message overhead presents an under-linear growth as the number of processes and/or the message density increase.

  • Fine-Grained Run-Tume Power Gating through Co-optimization of Circuit, Architecture, and System Software Design Open Access

    Hiroshi NAKAMURA  Weihan WANG  Yuya OHTA  Kimiyoshi USAMI  Hideharu AMANO  Masaaki KONDO  Mitaro NAMIKI  

     
    INVITED PAPER

      Vol:
    E96-C No:4
      Page(s):
    404-412

    Power consumption has recently emerged as a first class design constraint in system LSI designs. Specially, leakage power has occupied a large part of the total power consumption. Therefore, reduction of leakage power is indispensable for efficient design of high-performance system LSIs. Since 2006, we have carried out a research project called “Innovative Power Control for Ultra Low-Power and High-Performance System LSIs”, supported by Japan Science and Technology Agency as a CREST research program. One of the major objectives of this project is reducing the leakage power consumption of system LSIs by innovative power control through tight cooperation and co-optimization of circuit technology, architecture, and system software designs. In this project, we focused on power gating as a circuit technique for reducing leakage power. Temporal granularity is one of the most important issue in power gating. Thus, we have developed a series of Geysers as proof-of-concept CPUs which provide several mechanisms of fine-grained run-time power gating. In this paper, we describe their concept and design, and explain why co-optimization of different design layers are important. Then, three kinds of power gating implementations and their evaluation are presented from the view point of power saving and temporal granularity.

  • A Cost-Effective Selective TMR for Coarse-Grained Reconfigurable Architectures Based on DFG-Level Vulnerability Analysis

    Takashi IMAGAWA  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    454-462

    This paper proposes a novel method to determine a priority for applying selective triple modular redundancy (selective TMR) against single event upset (SEU) to achieve cost-effective reliable implementation of application circuits onto coarse-grained reconfigurable architectures (CGRAs). The priority is determined by an estimation of the vulnerability of each node in the data flow graph (DFG) of the application circuit. The estimation is based on a weighted sum of the node parameters which characterize impact of the SEU in the node on the output data. This method does not require time-consuming placement-and-routing processes, as well as extensive fault simulations for various triplicating patterns, which allows us to identify the set of nodes to be triplicated for minimizing the vulnerability under given area constraint at the early stage of design flow. Therefore, the proposed method enables us efficient design space exploration of reliability-oriented CGRAs and their applications.

  • Performance Improvement of the Analog ANC Circuit for a Duct by Insertion of an All-Pass Filter

    Tatsuki HYODO  Gaku ASAKURA  Kiwamu TSUKADA  Masashi KATO  

     
    LETTER-Noise and Vibration

      Vol:
    E96-A No:4
      Page(s):
    824-825

    This letter proposes an analog active noise control (ANC) circuit with an all-pass filter (APF). To improve performance of the previously reported analog ANC circuit, we inserted an APF to the circuit in order to fit phases of a noise and an electrical signal in the circuit. As a result, we confirmed improvement of the noise canceling effect of the analog ANC circuit.

  • A Bayesian Framework Using Multiple Model Structures for Speech Recognition

    Sayaka SHIOTA  Kei HASHIMOTO  Yoshihiko NANKAKU  Keiichi TOKUDA  

     
    PAPER-Speech and Hearing

      Vol:
    E96-D No:4
      Page(s):
    939-948

    This paper proposes an acoustic modeling technique based on Bayesian framework using multiple model structures for speech recognition. The aim of the Bayesian approach is to obtain good prediction of observation by marginalizing all variables related to generative processes. Although the effectiveness of marginalizing model parameters was recently reported in speech recognition, most of these systems use only “one” model structure, e.g., topologies of HMMs, the number of states and mixtures, types of state output distributions, and parameter tying structures. However, it is insufficient to represent a true model distribution, because a family of such models usually does not include a true distribution in most practical cases. One of solutions of this problem is to use multiple model structures. Although several approaches using multiple model structures have already been proposed, the consistent integration of multiple model structures based on the Bayesian approach has not seen in speech recognition. This paper focuses on integrating multiple phonetic decision trees based on the Bayesian framework in HMM based acoustic modeling. The proposed method is derived from a new marginal likelihood function which includes the model structures as a latent variable in addition to HMM state sequences and model parameters, and the posterior distributions of these latent variables are obtained using the variational Bayesian method. Furthermore, to improve the optimization algorithm, the deterministic annealing EM (DAEM) algorithm is applied to the training process. The proposed method effectively utilizes multiple model structures, especially in the early stage of training and this leads to better predictive distributions and improvement of recognition performance.

  • A Bag-of-Features Approach to Classify Six Types of Pulmonary Textures on High-Resolution Computed Tomography Open Access

    Rui XU  Yasushi HIRANO  Rie TACHIBANA  Shoji KIDO  

     
    PAPER-Computer-Aided Diagnosis

      Vol:
    E96-D No:4
      Page(s):
    845-855

    Computer-aided diagnosis (CAD) systems on diffuse lung diseases (DLD) were required to facilitate radiologists to read high-resolution computed tomography (HRCT) scans. An important task on developing such CAD systems was to make computers automatically recognize typical pulmonary textures of DLD on HRCT. In this work, we proposed a bag-of-features based method for the classification of six kinds of DLD patterns which were consolidation (CON), ground-glass opacity (GGO), honeycombing (HCM), emphysema (EMP), nodular (NOD) and normal tissue (NOR). In order to successfully apply the bag-of-features based method on this task, we focused to design suitable local features and the classifier. Considering that the pulmonary textures were featured by not only CT values but also shapes, we proposed a set of statistical measures based local features calculated from both CT values and eigen-values of Hessian matrices. Additionally, we designed a support vector machine (SVM) classifier by optimizing parameters related to both kernels and the soft-margin penalty constant. We collected 117 HRCT scans from 117 subjects for experiments. Three experienced radiologists were asked to review the data and their agreed-regions where typical textures existed were used to generate 3009 3D volume-of-interest (VOIs) with the size of 323232. These VOIs were separated into two sets. One set was used for training and tuning parameters, and the other set was used for evaluation. The overall recognition accuracy for the proposed method was 93.18%. The precisions/sensitivities for each texture were 96.67%/95.08% (CON), 92.55%/94.02% (GGO), 97.67%/99.21% (HCM), 94.74%/93.99% (EMP), 81.48%/86.03%(NOD) and 94.33%/90.74% (NOR). Additionally, experimental results showed that the proposed method performed better than four kinds of baseline methods, including two state-of-the-art methods on classification of DLD textures.

  • Unified Time-Frequency OFDM Transmission with Self Interference Cancellation

    Changyong PAN  Linglong DAI  Zhixing YANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E96-A No:4
      Page(s):
    807-813

    Time domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) has higher spectral efficiency than the standard cyclic prefix OFDM (CP-OFDM) OFDM by replacing the random CP with the known training sequence (TS), which could be also used for synchronization and channel estimation. However, TDS-OFDM requires suffers from performance loss over fading channels due to the iterative interference cancellation has to be used to remove the mutual interferences between the TS and the useful data. To solve this problem, the novel TS based OFDM transmission scheme, referred to as the unified time-frequency OFDM (UTF-OFDM), is proposed in which the time-domain TS and the frequency-domain pilots are carefully designed to naturally avoid the interference from the TS to the data without any reconstruction. The proposed UTF-OFDM based flexible frame structure supports effective channel estimation and reliable channel equalization, while imposing a significantly lower complexity than the TDS-OFDM system at the cost of a slightly reduced spectral efficiency. Simulation results demonstrate that the proposed UTF-OFDM substantially outperforms the existing TDS-OFDM, in terms of the system's achievable bit error rate.

  • Design of a Reconfigurable Acoustic Modem for Underwater Sensor Networks

    Lingjuan WU  Ryan KASTNER  Bo GU  Dunshan YU  

     
    LETTER-Engineering Acoustics

      Vol:
    E96-A No:4
      Page(s):
    821-823

    Design of acoustic modem becomes increasingly important in underwater sensor networks' development. This paper presents the design of a reconfigurable acoustic modem, by defining modulation and demodulation as reconfigurable modules, the proposed modem changes its modulation scheme and data rate to provide reliable and energy efficient communication. The digital system, responsible for signal processing and control, is implemented on Xilinx Virtex5 FPGA. Hardware and software co-verification shows that the modem works correctly and can self-configure to BFSK and BPSK mode. Partial reconfiguration design method improves flexibility of algorithm design, and slice, LUT, register, DSP, RAMB are saved by 17%, 25%, 22%, 25%, 25% respectively.

  • Content Adaptive Hierarchical Decision of Variable Coding Block Sizes in High Efficiency Video Coding for High Resolution Videos

    Guifen TIAN  Xin JIN  Satoshi GOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:4
      Page(s):
    780-789

    The quadtree-based variable block sized prediction makes the biggest contribution for dramatically improved coding efficiency in the new video coding standard named HEVC. However, this technique takes about 75–80% computational complexity of an HEVC encoder. This paper brings forward an adaptive scheme that exploits temporal, spatial and transform-domain features to speed up the original quadtree-based prediction, targeting at high resolution videos. Before encoding starts, analysis on utilization ratio of each coding depth is performed to skip rarely adopted coding depths at frame level. Then, texture complexity (TC) measurement is applied to filter out none-contributable coding blocks for each largest coding unit (LCU). In this step, a dynamic threshold setting approach is proposed to make filtering adaptable to videos and coding parameters. Thirdly, during encoding process, sum of absolute quantized residual coefficient (SAQC) is used as criterion to prune useless coding blocks for both LCUs and 3232 blocks. By using proposed scheme, motion estimation is performed for prediction blocks within a narrowed range. Experiments show that proposed scheme outperforms existing works and speeds up original HEVC by a factor of up to 61.89% and by an average of 33.65% for 4kx2k video sequences. Meanwhile, the peak signal-to-noise ratio (PSNR) degradation and bit increment are trivial.

  • Indoor Scene Classification Based on the Bag-of-Words Model of Local Feature Information Gain

    Rong WANG  Zhiliang WANG  Xirong MA  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:4
      Page(s):
    984-987

    For the problem of Indoor Home Scene Classification, this paper proposes the BOW Model of Local Feature Information Gain. The experimental results show that not only the performance is improved but also the computation is reduced. Consequently this method out performs the state-of-the-art approach.

  • Ultimate Boundedness of Nonlinear Singularly Perturbed System with Measurement Noise

    Kyung-In KANG  Kyun-Sang PARK  Jong-Tae LIM  

     
    LETTER-Systems and Control

      Vol:
    E96-A No:4
      Page(s):
    826-829

    In this letter, we consider the ultimate boundedness of the singularly perturbed system with measurement noise. The composite controller is commonly used to regulate the singularly perturbed system. However, in the presence of measurement noise, the composite controller does not guarantee the ultimate boundedness of the singularly perturbed system. Thus, we propose the modified composite controller to show the ultimate boundedness of the singularly perturbed system with measurement noise.

  • Development of a Robust and Compact On-Line Handwritten Japanese Text Recognizer for Hand-Held Devices

    Jinfeng GAO  Bilan ZHU  Masaki NAKAGAWA  

     
    PAPER-Pattern Recognition

      Vol:
    E96-D No:4
      Page(s):
    927-938

    The paper describes how a robust and compact on-line handwritten Japanese text recognizer was developed by compressing each component of an integrated text recognition system including a SVM classifier to evaluate segmentation points, an on-line and off-line combined character recognizer, a linguistic context processor, and a geometric context evaluation module to deploy it on hand-held devices. Selecting an elastic-matching based on-line recognizer and compressing MQDF2 via a combination of LDA, vector quantization and data type transformation, have contributed to building a remarkably small yet robust recognizer. The compact text recognizer covering 7,097 character classes just requires about 15 MB memory to keep 93.11% accuracy on horizontal text lines extracted from the TUAT Kondate database. Compared with the original full-scale Japanese text recognizer, the memory size is reduced from 64.1 MB to 14.9 MB while the accuracy loss is only 0.5% from 93.6% to 93.11%. The method is scalable so even systems of less than 11 MB or less than 6 MB still remain 92.80% or 90.02% accuracy, respectively.

6141-6160hit(21534hit)