The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

241-260hit(30728hit)

  • Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem

    Jun SUZUKI  

     
    PAPER-Quantum Information Theory

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:3
      Page(s):
    510-518

    In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum logarithmic derivative bounds.

  • Meta-Bound on Lower Bounds of Bayes Risk in Parameter Estimation

    Shota SAITO  

     
    PAPER-Estimation

      Pubricized:
    2023/08/09
      Vol:
    E107-A No:3
      Page(s):
    503-509

    Information-theoretic lower bounds of the Bayes risk have been investigated for a problem of parameter estimation in a Bayesian setting. Previous studies have proven the lower bound of the Bayes risk in a different manner and characterized the lower bound via different quantities such as mutual information, Sibson's α-mutual information, f-divergence, and Csiszár's f-informativity. In this paper, we introduce an inequality called a “meta-bound for lower bounds of the Bayes risk” and show that the previous results can be derived from this inequality.

  • Communication-Efficient Distributed Orthogonal Approximate Message Passing for Sparse Signal Recovery

    Ken HISANAGA  Motohiko ISAKA  

     
    PAPER-Signal Processing

      Pubricized:
    2023/08/30
      Vol:
    E107-A No:3
      Page(s):
    493-502

    In this paper, we introduce a framework of distributed orthogonal approximate message passing for recovering sparse vector based on sensing by multiple nodes. The iterative recovery process consists of local computation at each node, and global computation performed either by a particular node or joint computation on the overall network by exchanging messages. We then propose a method to reduce the communication cost between the nodes while maintaining the recovery performance.

  • PSOR-Jacobi Algorithm for Accelerated MMSE MIMO Detection

    Asahi MIZUKOSHI  Ayano NAKAI-KASAI  Tadashi WADAYAMA  

     
    PAPER-Communication Theory and Systems

      Pubricized:
    2023/08/04
      Vol:
    E107-A No:3
      Page(s):
    486-492

    This paper proposes the periodical successive over-relaxation (PSOR)-Jacobi algorithm for minimum mean squared error (MMSE) detection of multiple-input multiple-output (MIMO) signals. The proposed algorithm has the advantages of two conventional methods. One is the Jacobi method, which is an iterative method for solving linear equations and is suitable for parallel implementation. The Jacobi method is thus a promising candidate for high-speed simultaneous linear equation solvers for the MMSE detector. The other is the Chebyshev PSOR method, which has recently been shown to accelerate the convergence speed of linear fixed-point iterations. We compare the convergence performance of the PSOR-Jacobi algorithm with that of conventional algorithms via computer simulation. The results show that the PSOR-Jacobi algorithm achieves faster convergence without increasing computational complexity, and higher detection performance for a fixed number of iterations. This paper also proposes an efficient computation method of inverse matrices using the PSOR-Jacobi algorithm. The results of computer simulation show that the PSOR-Jacobi algorithm also accelerates the computation of inverse matrix.

  • Efficient Construction of Encoding Polynomials in a Distributed Coded Computing Scheme

    Daisuke HIBINO  Tomoharu SHIBUYA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/08/10
      Vol:
    E107-A No:3
      Page(s):
    476-485

    Distributed computing is one of the powerful solutions for computational tasks that need the massive size of dataset. Lagrange coded computing (LCC), proposed by Yu et al. [15], realizes private and secure distributed computing under the existence of stragglers, malicious workers, and colluding workers by using an encoding polynomial. Since the encoding polynomial depends on a dataset, it must be updated every arrival of new dataset. Therefore, it is necessary to employ efficient algorithm to construct the encoding polynomial. In this paper, we propose Newton coded computing (NCC) which is based on Newton interpolation to construct the encoding polynomial. Let K, L, and T be the number of data, the length of each data, and the number of colluding workers, respectively. Then, the computational complexity for construction of an encoding polynomial is improved from O(L(K+T)log 2(K+T)log log (K+T)) for LCC to O(L(K+T)log (K+T)) for the proposed method. Furthermore, by applying the proposed method, the computational complexity for updating the encoding polynomial is improved from O(L(K+T)log 2(K+T)log log (K+T)) for LCC to O(L) for the proposed method.

  • Short DL-Based Blacklistable Ring Signatures from DualRing

    Toru NAKANISHI  Atsuki IRIBOSHI  Katsunobu IMAI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/09/06
      Vol:
    E107-A No:3
      Page(s):
    464-475

    As one of privacy-enhancing authentications suitable for decentralized environments, ring signatures have intensively been researched. In ring signatures, each user can choose any ad-hoc set of users (specified by public keys) called a ring, and anonymously sign a message as one of the users. However, in applications of anonymous authentications, users may misbehave the service due to the anonymity, and thus a mechanism to exclude the anonymous misbehaving users is required. However, in the existing ring signature scheme, a trusted entity to open the identity of the user is needed, but it is not suitable for the decentralized environments. On the other hand, as another type of anonymous authentications, a decentralized blacklistable anonymous credential system is proposed, where anonymous misbehaving users can be detected and excluded by a blacklist. However, the DL-based instantiation needs O(N) proof size for the ring size N. In the research line of the DL-based ring signatures, an efficient scheme with O(log N) signature size, called DualRing, is proposed. In this paper, we propose a DL-based blacklistable ring signature scheme extended from DualRing, where in addition to the short O(log N) signature size for N, the blacklisting mechanism is realized to exclude misbehaving users. Since the blacklisting mechanism causes additional costs in our scheme, the signature size is O(log N+l), where l is the blacklist size.

  • An Efficient Bayes Coding Algorithm for Changing Context Tree Model

    Koshi SHIMADA  Shota SAITO  Toshiyasu MATSUSHIMA  

     
    PAPER-Source Coding and Data Compression

      Pubricized:
    2023/08/24
      Vol:
    E107-A No:3
      Page(s):
    448-457

    The context tree model has the property that the occurrence probability of symbols is determined from a finite past sequence and is a broader class of sources that includes i.i.d. or Markov sources. This paper proposes a non-stationary source with context tree models that change from interval to interval. The Bayes code for this source requires weighting of the posterior probabilities of the context tree models and change points, so the computational complexity of it usually increases to exponential order. Therefore, the challenge is how to reduce the computational complexity. In this paper, we propose a special class of prior probability distribution of context tree models and change points and develop an efficient Bayes coding algorithm by combining two existing Bayes coding algorithms. The algorithm minimizes the Bayes risk function of the proposed source in this paper, and the computational complexity of the proposed algorithm is polynomial order. We investigate the behavior and performance of the proposed algorithm by conducting experiments.

  • Proof of Achievability Part of Rate-Distortion Theorem without Random Coding

    Mikihiko NISHIARA  Yuki ITO  

     
    PAPER-Source Coding and Data Compression

      Pubricized:
    2023/10/10
      Vol:
    E107-A No:3
      Page(s):
    404-408

    The achievability part of the rate-distortion theorem is proved by showing existence of good codes. For i.i.d. sources, two methods showing existence are known; random coding and non-random coding. For general sources, however, no proof in which good codes are constructed with non-random coding is found. In this paper, with a non-random method of code construction, we prove the achievability part of the rate-distortion theorem for general sources. Moreover, we also prove a stochastic variation of the rate-distortion theorem with the same method.

  • Equivalences among Some Information Measures for Individual Sequences and Their Applications for Fixed-Length Coding Problems

    Tomohiko UYEMATSU  Tetsunao MATSUTA  

     
    PAPER-Source Coding and Data Compression

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:3
      Page(s):
    393-403

    This paper proposes three new information measures for individual sequences and clarifies their properties. Our new information measures are called as the non-overlapping max-entropy, the overlapping smooth max-entropy, and the non-overlapping smooth max-entropy, respectively. These measures are related to the fixed-length coding of individual sequences. We investigate these measures, and show the following three properties: (1) The non-overlapping max-entropy coincides with the topological entropy. (2) The overlapping smooth max-entropy and the non-overlapping smooth max-entropy coincide with the Ziv-entropy. (3) When an individual sequence is drawn from an ergodic source, the overlapping smooth max-entropy and the non-overlapping smooth max-entropy coincide with the entropy rate of the source. Further, we apply these information measures to the fixed-length coding of individual sequences, and propose some new universal coding schemes which are asymptotically optimum.

  • A Fundamental Limit of Variable-Length Compression with Worst-Case Criteria in Terms of Side Information

    Sho HIGUCHI  Yuta SAKAI  

     
    PAPER-Source Coding and Data Compression

      Pubricized:
    2023/07/03
      Vol:
    E107-A No:3
      Page(s):
    384-392

    In this study, we consider the data compression with side information available at both the encoder and the decoder. The information source is assigned to a variable-length code that does not have to satisfy the prefix-free constraints. We define several classes of codes whose codeword lengths and error probabilities satisfy worse-case criteria in terms of side-information. As a main result, we investigate the exact first-order asymptotics with second-order bounds scaled as Θ(√n) as blocklength n increases under the regime of nonvanishing error probabilities. To get this result, we also derive its one-shot bounds by employing the cutoff operation.

  • Information-Theoretic Perspectives for Simulation-Based Security in Multi-Party Computation

    Mitsugu IWAMOTO  

     
    INVITED PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/01
      Vol:
    E107-A No:3
      Page(s):
    360-372

    Information-theoretic security and computational security are fundamental paradigms of security in the theory of cryptography. The two paradigms interact with each other but have shown different progress, which motivates us to explore the intersection between them. In this paper, we focus on Multi-Party Computation (MPC) because the security of MPC is formulated by simulation-based security, which originates from computational security, even if it requires information-theoretic security. We provide several equivalent formalizations of the security of MPC under a semi-honest model from the viewpoints of information theory and statistics. The interpretations of these variants are so natural that they support the other aspects of simulation-based security. Specifically, the variants based on conditional mutual information and sufficient statistics are interesting because security proofs for those variants can be given by information measures and factorization theorem, respectively. To exemplify this, we show several security proofs of BGW (Ben-Or, Goldwasser, Wigderson) protocols, which are basically proved by constructing a simulator.

  • Adversarial Examples Created by Fault Injection Attack on Image Sensor Interface

    Tatsuya OYAMA  Kota YOSHIDA  Shunsuke OKURA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:3
      Page(s):
    344-354

    Adversarial examples (AEs), which cause misclassification by adding subtle perturbations to input images, have been proposed as an attack method on image-classification systems using deep neural networks (DNNs). Physical AEs created by attaching stickers to traffic signs have been reported, which are a threat to traffic-sign-recognition DNNs used in advanced driver assistance systems. We previously proposed an attack method for generating a noise area on images by superimposing an electrical signal on the mobile industry processor interface and showed that it can generate a single adversarial mark that triggers a backdoor attack on the input image. Therefore, we propose a misclassification attack method n DNNs by creating AEs that include small perturbations to multiple places on the image by the fault injection. The perturbation position for AEs is pre-calculated in advance against the target traffic-sign image, which will be captured on future driving. With 5.2% to 5.5% of a specific image on the simulation, the perturbation that induces misclassification to the target label was calculated. As the experimental results, we confirmed that the traffic-sign-recognition DNN on a Raspberry Pi was successfully misclassified when the target traffic sign was captured with. In addition, we created robust AEs that cause misclassification of images with varying positions and size by adding a common perturbation. We propose a method to reduce the amount of robust AEs perturbation. Our results demonstrated successful misclassification of the captured image with a high attack success rate even if the position and size of the captured image are slightly changed.

  • Power Analysis of Floating-Point Operations for Leakage Resistance Evaluation of Neural Network Model Parameters

    Hanae NOZAKI  Kazukuni KOBARA  

     
    PAPER

      Pubricized:
    2023/09/25
      Vol:
    E107-A No:3
      Page(s):
    331-343

    In the field of machine learning security, as one of the attack surfaces especially for edge devices, the application of side-channel analysis such as correlation power/electromagnetic analysis (CPA/CEMA) is expanding. Aiming to evaluate the leakage resistance of neural network (NN) model parameters, i.e. weights and biases, we conducted a feasibility study of CPA/CEMA on floating-point (FP) operations, which are the basic operations of NNs. This paper proposes approaches to recover weights and biases using CPA/CEMA on multiplication and addition operations, respectively. It is essential to take into account the characteristics of the IEEE 754 representation in order to realize the recovery with high precision and efficiency. We show that CPA/CEMA on FP operations requires different approaches than traditional CPA/CEMA on cryptographic implementations such as the AES.

  • Flexible and Energy-Efficient Crypto-Processor for Arbitrary Input Length Processing in Blockchain-Based IoT Applications

    Vu-Trung-Duong LE  Hoai-Luan PHAM  Thi-Hong TRAN  Yasuhiko NAKASHIMA  

     
    PAPER

      Pubricized:
    2023/09/04
      Vol:
    E107-A No:3
      Page(s):
    319-330

    Blockchain-based Internet of Things (IoT) applications require flexible, fast, and low-power hashing hardware to ensure IoT data integrity and maintain blockchain network confidentiality. However, existing hashing hardware poses challenges in achieving high performance and low power and limits flexibility to compute multiple hash functions with different message lengths. This paper introduces the flexible and energy-efficient crypto-processor (FECP) to achieve high flexibility, high speed, and low power with high hardware efficiency for blockchain-based IoT applications. To achieve these goals, three new techniques are proposed, namely the crypto arithmetic logic unit (Crypto-ALU), dual buffering extension (DBE), and local data memory (LDM) scheduler. The experiments on ASIC show that the FECP can perform various hash functions with a power consumption of 0.239-0.676W, a throughput of 10.2-3.35Gbps, energy efficiency of 4.44-14.01Gbps/W, and support up to 8916-bit message input. Compared to state-of-art works, the proposed FECP is 1.65-4.49 times, 1.73-21.19 times, and 1.48-17.58 times better in throughput, energy efficiency, and energy-delay product (EDP), respectively.

  • Ensemble Malware Classifier Considering PE Section Information

    Ren TAKEUCHI  Rikima MITSUHASHI  Masakatsu NISHIGAKI  Tetsushi OHKI  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:3
      Page(s):
    306-318

    The war between cyber attackers and security analysts is gradually intensifying. Owing to the ease of obtaining and creating support tools, recent malware continues to diversify into variants and new species. This increases the burden on security analysts and hinders quick analysis. Identifying malware families is crucial for efficiently analyzing diversified malware; thus, numerous low-cost, general-purpose, deep-learning-based classification techniques have been proposed in recent years. Among these methods, malware images that represent binary features as images are often used. However, no models or architectures specific to malware classification have been proposed in previous studies. Herein, we conduct a detailed analysis of the behavior and structure of malware and focus on PE sections that capture the unique characteristics of malware. First, we validate the features of each PE section that can distinguish malware families. Then, we identify PE sections that contain adequate features to classify families. Further, we propose an ensemble learning-based classification method that combines features of highly discriminative PE sections to improve classification accuracy. The validation of two datasets confirms that the proposed method improves accuracy over the baseline, thereby emphasizing its importance.

  • Hilbert Series for Systems of UOV Polynomials

    Yasuhiko IKEMATSU  Tsunekazu SAITO  

     
    PAPER

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:3
      Page(s):
    275-282

    Multivariate public key cryptosystems (MPKC) are constructed based on the problem of solving multivariate quadratic equations (MQ problem). Among various multivariate schemes, UOV is an important signature scheme since it is underlying some signature schemes such as MAYO, QR-UOV, and Rainbow which was a finalist of NIST PQC standardization project. To analyze the security of a multivariate scheme, it is necessary to analyze the first fall degree or solving degree for the system of polynomial equations used in specific attacks. It is known that the first fall degree or solving degree often relates to the Hilbert series of the ideal generated by the system. In this paper, we study the Hilbert series of the UOV scheme, and more specifically, we study the Hilbert series of ideals generated by quadratic polynomials used in the central map of UOV. In particular, we derive a prediction formula of the Hilbert series by using some experimental results. Moreover, we apply it to the analysis of the reconciliation attack for MAYO.

  • Generic Construction of Public-Key Authenticated Encryption with Keyword Search Revisited

    Keita EMURA  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-A No:3
      Page(s):
    260-274

    Public key authenticated encryption with keyword search (PAEKS) has been proposed, where a sender's secret key is required for encryption, and a trapdoor is associated with not only a keyword but also the sender. This setting allows us to prevent information leakage of keyword from trapdoors. Liu et al. (ASIACCS 2022) proposed a generic construction of PAEKS based on word-independent smooth projective hash functions (SPHFs) and PEKS. In this paper, we propose a new generic construction of PAEKS, which is more efficient than Liu et al.'s in the sense that we only use one SPHF, but Liu et al. used two SPHFs. In addition, for consistency we considered a security model that is stronger than Liu et al.'s. Briefly, Liu et al. considered only keywords even though a trapdoor is associated with not only a keyword but also a sender. Thus, a trapdoor associated with a sender should not work against ciphertexts generated by the secret key of another sender, even if the same keyword is associated. That is, in the previous definitions, there is room for a ciphertext to be searchable even though the sender was not specified when the trapdoor is generated, that violates the authenticity of PAKES. Our consistency definition considers a multi-sender setting and captures this case. In addition, for indistinguishability against chosen keyword attack (IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA), we use a stronger security model defined by Qin et al. (ProvSec 2021), where an adversary is allowed to query challenge keywords to the encryption and trapdoor oracles. We also highlight several issues associated with the Liu et al. construction in terms of hash functions, e.g., their construction does not satisfy the consistency that they claimed to hold.

  • More Efficient Adaptively Secure Lattice-Based IBE with Equality Test in the Standard Model

    Kyoichi ASANO  Keita EMURA  Atsushi TAKAYASU  

     
    PAPER

      Pubricized:
    2023/10/05
      Vol:
    E107-A No:3
      Page(s):
    248-259

    Identity-based encryption with equality test (IBEET) is a variant of identity-based encryption (IBE), in which any user with trapdoors can check whether two ciphertexts are encryption of the same plaintext. Although several lattice-based IBEET schemes have been proposed, they have drawbacks in either security or efficiency. Specifically, most IBEET schemes only satisfy selective security, while public keys of adaptively secure schemes in the standard model consist of matrices whose numbers are linear in the security parameter. In other words, known lattice-based IBEET schemes perform poorly compared to the state-of-the-art lattice-based IBE schemes (without equality test). In this paper, we propose a semi-generic construction of CCA-secure lattice-based IBEET from a certain class of lattice-based IBE schemes. As a result, we obtain the first lattice-based IBEET schemes with adaptive security and CCA security in the standard model without sacrificing efficiency. This is because, our semi-generic construction can use several state-of-the-art lattice-based IBE schemes as underlying schemes, e.g. Yamada's IBE scheme (CRYPTO'17).

  • Efficient Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions and Their Applications

    Daisuke MAEDA  Koki MORIMURA  Shintaro NARISADA  Kazuhide FUKUSHIMA  Takashi NISHIDE  

     
    PAPER

      Pubricized:
    2023/09/14
      Vol:
    E107-A No:3
      Page(s):
    234-247

    We propose how to homomorphically evaluate arbitrary univariate and bivariate integer functions such as division. A prior work proposed by Okada et al. (WISTP'18) uses polynomial evaluations such that the scheme is still compatible with the SIMD operations in BFV and BGV schemes, and is implemented with the input domain ℤ257. However, the scheme of Okada et al. requires the quadratic numbers of plaintext-ciphertext multiplications and ciphertext-ciphertext additions in the input domain size, and although these operations are more lightweight than the ciphertext-ciphertext multiplication, the quadratic complexity makes handling larger inputs quite inefficient. In this work, first we improve the prior work and also propose a new approach that exploits the packing method to handle the larger input domain size instead of enabling the SIMD operation, thus making it possible to work with the larger input domain size, e.g., ℤ215 in a reasonably efficient way. In addition, we show how to slightly extend the input domain size to ℤ216 with a relatively moderate overhead. Further we show another approach to handling the larger input domain size by using two ciphertexts to encrypt one integer plaintext and applying our techniques for uni/bivariate function evaluation. We implement the prior work of Okada et al., our improved version of Okada et al., and our new scheme in PALISADE with the input domain ℤ215, and confirm that the estimated run-times of the prior work and our improved version of the prior work are still about 117 days and 59 days respectively while our new scheme can be computed in 307 seconds.

  • Correlated Randomness Reduction in Domain-Restricted Secure Two-Party Computation

    Keitaro HIWATASHI  Koji NUIDA  

     
    PAPER

      Pubricized:
    2023/10/04
      Vol:
    E107-A No:3
      Page(s):
    283-290

    Secure two-party computation is a cryptographic tool that enables two parties to compute a function jointly without revealing their inputs. It is known that any function can be realized in the correlated randomness (CR) model, where a trusted dealer distributes input-independent CR to the parties beforehand. Sometimes we can construct more efficient secure two-party protocol for a function g than that for a function f, where g is a restriction of f. However, it is not known in which case we can construct more efficient protocol for domain-restricted function. In this paper, we focus on the size of CR. We prove that we can construct more efficient protocol for a domain-restricted function when there is a “good” structure in CR space of a protocol for the original function, and show a unified way to construct a more efficient protocol in such case. In addition, we show two applications of the above result: The first application shows that some known techniques of reducing CR size for domain-restricted function can be derived in a unified way, and the second application shows that we can construct more efficient protocol than an existing one using our result.

241-260hit(30728hit)