The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

101-120hit(30728hit)

  • Efficient Wafer-Level Spatial Variation Modeling for Multi-Site RF IC Testing Open Access

    Riaz-ul-haque MIAN  Tomoki NAKAMURA  Masuo KAJIYAMA  Makoto EIKI  Michihiro SHINTANI  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/11/16
      Vol:
    E107-A No:8
      Page(s):
    1139-1150

    Wafer-level performance prediction techniques have been increasingly gaining attention in production LSI testing due to their ability to reduce measurement costs without compromising test quality. Despite the availability of several efficient methods, the site-to-site variation commonly observed in multi-site testing for radio frequency circuits remains inadequately addressed. In this manuscript, we propose a wafer-level performance prediction approach for multi-site testing that takes into account the site-to-site variation. Our proposed method is built on the Gaussian process, a widely utilized wafer-level spatial correlation modeling technique, and enhances prediction accuracy by extending hierarchical modeling to leverage the test site information test engineers provide. Additionally, we propose a test-site sampling method that maximizes cost reduction while maintaining sufficient estimation accuracy. Our experimental results, which employ industrial production test data, demonstrate that our proposed method can decrease the estimation error to 1/19 of that a conventional method achieves. Furthermore, our sampling method can reduce the required measurements by 97% while ensuring satisfactory estimation accuracy.

  • A Multi-Channel Biomedical Sensor System with System-Level Chopping and Stochastic A/D Conversion Open Access

    Yusaku HIRAI  Toshimasa MATSUOKA  Takatsugu KAMATA  Sadahiro TANI  Takao ONOYE  

     
    PAPER-Circuit Theory

      Pubricized:
    2024/02/09
      Vol:
    E107-A No:8
      Page(s):
    1127-1138

    This paper presents a multi-channel biomedical sensor system with system-level chopping and stochastic analog-to-digital (A/D) conversion techniques. The system-level chopping technique extends the input-signal bandwidth and reduces the interchannel crosstalk caused by multiplexing. The system-level chopping can replace an analog low-pass filter (LPF) with a digital filter and can reduce its area occupation. The stochastic A/D conversion technique realizes power-efficient resolution enhancement. A novel auto-calibration technique is also proposed for the stochastic A/D conversion technique. The proposed system includes a prototype analog front-end (AFE) IC fabricated using a 130 nm CMOS process. The fabricated AFE IC improved its interchannel crosstalk by 40 dB compared with the conventional analog chopping architecture. The AFE IC achieved SNDR of 62.9 dB at a sampling rate of 31.25 kSps while consuming 9.6 μW from a 1.2 V power supply. The proposed resolution enhancement technique improved the measured SNDR by 4.5 dB.

  • Analytical Model of Maximum Operating Frequency of Class-D ZVS Inverter with Linearized Parasitic Capacitance and any Duty Ratio Open Access

    Yi XIONG  Senanayake THILAK  Yu YONEZAWA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Circuit Theory

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:8
      Page(s):
    1115-1126

    This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.

  • Controlling Chaotic Resonance with Extremely Local-Specific Feedback Signals Open Access

    Takahiro IINUMA  Yudai EBATO  Sou NOBUKAWA  Nobuhiko WAGATSUMA  Keiichiro INAGAKI  Hirotaka DOHO  Teruya YAMANISHI  Haruhiko NISHIMURA  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2024/01/17
      Vol:
    E107-A No:8
      Page(s):
    1106-1114

    Stochastic resonance is a representative phenomenon in which the degree of synchronization with a weak input signal is enhanced using additive stochastic noise. In systems with multiple chaotic attractors, the chaos-chaos intermittent behavior in attractor-merging bifurcation induces chaotic resonance, which is similar to the stochastic resonance and has high sensitivity. However, controlling chaotic resonance is difficult because it requires adjusting the internal parameters from the outside. The reduced-region-of-orbit (RRO) method, which controls the attractor-merging bifurcation using an external feedback signal, is employed to overcome this issue. However, the lower perturbation of the feedback signal requires further improvement for engineering applications. This study proposed an RRO method with more sophisticated and less perturbed feedback signals, called the double-Gaussian-filtered RRO (DG-RRO) method. The inverse sign of the map function and double Gaussian filters were used to improve the local specification, i.e., the concentration around the local maximum/minimum in the feedback signals, called the DG-RRO feedback signals. Owing to their fine local specification, these signals achieved the attractor-merging bifurcation with significantly smaller feedback perturbation than that in the conventional RRO method. Consequently, chaotic resonance was induced through weak feedback perturbation. It exhibited greater synchronization against weak input signals than that induced by the conventional RRO feedback signal and sustained the same level of response frequency range as that of the conventional RRO method. These advantages may pave the way for utilizing chaotic resonance in engineering scenarios where the stochastic resonance has been applied.

  • Synchronization of Canards in Coupled Canard-Generating Bonhoeffer-Van Der Pol Oscillators Subject to Weak Periodic Perturbations Open Access

    Kundan Lal DAS  Munehisa SEKIKAWA  Tadashi TSUBONE  Naohiko INABA  Hideaki OKAZAKI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2023/11/13
      Vol:
    E107-A No:8
      Page(s):
    1098-1105

    This paper discusses the synchronization of two identical canard-generating oscillators. First, we investigate a canard explosion generated in a system containing a Bonhoeffer-van der Pol (BVP) oscillator using the actual parameter values obtained experimentally. We find that it is possible to numerically observe a canard explosion using this dynamic oscillator. Second, we analyze the complete and in-phase synchronizations of identical canard-generating coupled oscillators via experimental and numerical methods. However, we experimentally determine that a small decrease in the coupling strength of the system induces the collapse of the complete synchronization and the occurrence of a complex synchronization; this finding could not be explained considering four-dimensional autonomous coupled BVP oscillators in our numerical work. To numerically investigate the experimental results, we construct a model containing coupled BVP oscillators that are subjected to two weak periodic perturbations having the same frequency. Further, we find that this model can efficiently numerically reproduce experimentally observed synchronization.

  • Improved PBFT-Based High Security and Large Throughput Data Resource Sharing for Distribution Power Grid Open Access

    Zhimin SHAO  Chunxiu LIU  Cong WANG  Longtan LI  Yimin LIU  Zaiyan ZHOU  

     
    PAPER-Systems and Control

      Pubricized:
    2024/01/31
      Vol:
    E107-A No:8
      Page(s):
    1085-1097

    Data resource sharing can guarantee the reliable and safe operation of distribution power grid. However, it faces the challenges of low security and high delay in the sharing process. Consortium blockchain can ensure the security and efficiency of data resource sharing, but it still faces problems such as arbitrary master node selection and high consensus delay. In this paper, we propose an improved practical Byzantine fault tolerance (PBFT) consensus algorithm based on intelligent consensus node selection to realize high-security and real-time data resource sharing for distribution power grid. Firstly, a blockchain-based data resource sharing model is constructed to realize secure data resource storage by combining the consortium blockchain and interplanetary file system (IPFS). Then, the improved PBFT consensus algorithm is proposed to optimize the consensus node selection based on the upper confidence bound of node performance. It prevents Byzantine nodes from participating in the consensus process, reduces the consensus delay, and improves the security of data resource sharing. The simulation results verify the effectiveness of the proposed algorithm.

  • Backpressure Learning-Based Data Transmission Reliability-Aware Self-Organizing Networking for Power Line Communication in Distribution Network Open Access

    Zhan SHI  

     
    PAPER-Systems and Control

      Pubricized:
    2024/01/15
      Vol:
    E107-A No:8
      Page(s):
    1076-1084

    Power line communication (PLC) provides a flexible-access, wide-distribution, and low-cost communication solution for distribution network services. However, the PLC self-organizing networking in distribution network faces several challenges such as diversified data transmission requirements guarantee, the contradiction between long-term constraints and short-term optimization, and the uncertainty of global information. To address these challenges, we propose a backpressure learning-based data transmission reliability-aware self-organizing networking algorithm to minimize the weighted sum of node data backlogs under the long-term transmission reliability constraint. Specifically, the minimization problem is transformed by the Lyapunov optimization and backpressure algorithm. Finally, we propose a backpressure and data transmission reliability-aware state-action-reward-state-action (SARSA)-based self-organizing networking strategy to realize the PLC networking optimization. Simulation results demonstrate that the proposed algorithm has superior performances of data backlogs and transmission reliability.

  • Amodal Instance Segmentation of Thin Objects with Large Overlaps by Seed-to-Mask Extending Open Access

    Ryohei KANKE  Masanobu TAKAHASHI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2024/02/29
      Vol:
    E107-D No:7
      Page(s):
    908-911

    Amodal Instance Segmentation (AIS) aims to segment the regions of both visible and invisible parts of overlapping objects. The mainstream Mask R-CNN-based methods are unsuitable for thin objects with large overlaps because of their object proposal features with bounding boxes for three reasons. First, capturing the entire shapes of overlapping thin objects is difficult. Second, the bounding boxes of close objects are almost identical. Third, a bounding box contains many objects in most cases. In this paper, we propose a box-free AIS method, Seed-to-Mask, for thin objects with large overlaps. The method specifies a target object using a seed and iteratively extends the segmented region. We have achieved better performance in experiments on artificial data consisting only of thin objects.

  • Channel Pruning via Improved Grey Wolf Optimizer Pruner Open Access

    Xueying WANG  Yuan HUANG  Xin LONG  Ziji MA  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2024/03/07
      Vol:
    E107-D No:7
      Page(s):
    894-897

    In recent years, the increasing complexity of deep network structures has hindered their application in small resource constrained hardware. Therefore, we urgently need to compress and accelerate deep network models. Channel pruning is an effective method to compress deep neural networks. However, most existing channel pruning methods are prone to falling into local optima. In this paper, we propose a channel pruning method via Improved Grey Wolf Optimizer Pruner which called IGWO-Pruner to prune redundant channels of convolutional neural networks. It identifies pruning ratio of each layer by using Improved Grey Wolf algorithm, and then fine-tuning the new pruned network model. In experimental section, we evaluate the proposed method in CIFAR datasets and ILSVRC-2012 with several classical networks, including VGGNet, GoogLeNet and ResNet-18/34/56/152, and experimental results demonstrate the proposed method is able to prune a large number of redundant channels and parameters with rare performance loss.

  • Improving Sliced Wasserstein Distance with Geometric Median for Knowledge Distillation Open Access

    Hongyun LU  Mengmeng ZHANG  Hongyuan JING  Zhi LIU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2024/03/08
      Vol:
    E107-D No:7
      Page(s):
    890-893

    Currently, the most advanced knowledge distillation models use a metric learning approach based on probability distributions. However, the correlation between supervised probability distributions is typically geometric and implicit, causing inefficiency and an inability to capture structural feature representations among different tasks. To overcome this problem, we propose a knowledge distillation loss using the robust sliced Wasserstein distance with geometric median (GMSW) to estimate the differences between the teacher and student representations. Due to the intuitive geometric properties of GMSW, the student model can effectively learn to align its produced hidden states from the teacher model, thereby establishing a robust correlation among implicit features. In experiment, our method outperforms state-of-the-art models in both high-resource and low-resource settings.

  • Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv7-Tiny Open Access

    Min GAO  Gaohua CHEN  Jiaxin GU  Chunmei ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/03/19
      Vol:
    E107-D No:7
      Page(s):
    878-889

    Wearing a mask correctly is an effective method to prevent respiratory infectious diseases. Correct mask use is a reliable approach for preventing contagious respiratory infections. However, when dealing with mask-wearing in some complex settings, the detection accuracy still needs to be enhanced. The technique for mask-wearing detection based on YOLOv7-Tiny is enhanced in this research. Distribution Shifting Convolutions (DSConv) based on YOLOv7-tiny are used instead of the 3×3 convolution in the original model to simplify computation and increase detection precision. To decrease the loss of coordinate regression and enhance the detection performance, we adopt the loss function Intersection over Union with Minimum Points Distance (MPDIoU) instead of Complete Intersection over Union (CIoU) in the original model. The model is introduced with the GSConv and VoVGSCSP modules, recognizing the model’s mobility. The P6 detection layer has been designed to increase detection precision for tiny targets in challenging environments and decrease missed and false positive detection rates. The robustness of the model is increased further by creating and marking a mask-wearing data set in a multi environment that uses Mixup and Mosaic technologies for data augmentation. The efficiency of the model is validated in this research using comparison and ablation experiments on the mask dataset. The results demonstrate that when compared to YOLOv7-tiny, the precision of the enhanced detection algorithm is improved by 5.4%, Recall by 1.8%, mAP@.5 by 3%, mAP@.5:.95 by 1.7%, while the FLOPs is decreased by 8.5G. Therefore, the improved detection algorithm realizes more real-time and accurate mask-wearing detection tasks.

  • 2D Human Skeleton Action Recognition Based on Depth Estimation Open Access

    Lei WANG  Shanmin YANG  Jianwei ZHANG  Song GU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/02/27
      Vol:
    E107-D No:7
      Page(s):
    869-877

    Human action recognition (HAR) exhibits limited accuracy in video surveillance due to the 2D information captured with monocular cameras. To address the problem, a depth estimation-based human skeleton action recognition method (SARDE) is proposed in this study, with the aim of transforming 2D human action data into 3D format to dig hidden action clues in the 2D data. SARDE comprises two tasks, i.e., human skeleton action recognition and monocular depth estimation. The two tasks are integrated in a multi-task manner in end-to-end training to comprehensively utilize the correlation between action recognition and depth estimation by sharing parameters to learn the depth features effectively for human action recognition. In this study, graph-structured networks with inception blocks and skip connections are investigated for depth estimation. The experimental results verify the effectiveness and superiority of the proposed method in skeleton action recognition that the method reaches state-of-the-art on the datasets.

  • Conflict Management Method Based on a New Belief Divergence in Evidence Theory Open Access

    Zhu YIN  Xiaojian MA  Hang WANG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2024/03/01
      Vol:
    E107-D No:7
      Page(s):
    857-868

    Highly conflicting evidence that may lead to the counter-intuitive results is one of the challenges for information fusion in Dempster-Shafer evidence theory. To deal with this issue, evidence conflict is investigated based on belief divergence measuring the discrepancy between evidence. In this paper, the pignistic probability transform belief χ2 divergence, named as BBχ2 divergence, is proposed. By introducing the pignistic probability transform, the proposed BBχ2 divergence can accurately quantify the difference between evidence with the consideration of multi-element sets. Compared with a few belief divergences, the novel divergence has more precision. Based on this advantageous divergence, a new multi-source information fusion method is devised. The proposed method considers both credibility weights and information volume weights to determine the overall weight of each evidence. Eventually, the proposed method is applied in target recognition and fault diagnosis, in which comparative analysis indicates that the proposed method can realize the highest accuracy for managing evidence conflict.

  • Power Peak Load Forecasting Based on Deep Time Series Analysis Method Open Access

    Ying-Chang HUNG  Duen-Ren LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/03/21
      Vol:
    E107-D No:7
      Page(s):
    845-856

    The prediction of peak power load is a critical factor directly impacting the stability of power supply, characterized significantly by its time series nature and intricate ties to the seasonal patterns in electricity usage. Despite its crucial importance, the current landscape of power peak load forecasting remains a multifaceted challenge in the field. This study aims to contribute to this domain by proposing a method that leverages a combination of three primary models - the GRU model, self-attention mechanism, and Transformer mechanism - to forecast peak power load. To contextualize this research within the ongoing discourse, it’s essential to consider the evolving methodologies and advancements in power peak load forecasting. By delving into additional references addressing the complexities and current state of the power peak load forecasting problem, this study aims to build upon the existing knowledge base and offer insights into contemporary challenges and strategies adopted within the field. Data preprocessing in this study involves comprehensive cleaning, standardization, and the design of relevant functions to ensure robustness in the predictive modeling process. Additionally, recognizing the necessity to capture temporal changes effectively, this research incorporates features such as “Weekly Moving Average” and “Monthly Moving Average” into the dataset. To evaluate the proposed methodologies comprehensively, this study conducts comparative analyses with established models such as LSTM, Self-attention network, Transformer, ARIMA, and SVR. The outcomes reveal that the models proposed in this study exhibit superior predictive performance compared to these established models, showcasing their effectiveness in accurately forecasting electricity consumption. The significance of this research lies in two primary contributions. Firstly, it introduces an innovative prediction method combining the GRU model, self-attention mechanism, and Transformer mechanism, aligning with the contemporary evolution of predictive modeling techniques in the field. Secondly, it introduces and emphasizes the utility of “Weekly Moving Average” and “Monthly Moving Average” methodologies, crucial in effectively capturing and interpreting seasonal variations within the dataset. By incorporating these features, this study enhances the model’s ability to account for seasonal influencing factors, thereby significantly improving the accuracy of peak power load forecasting. This contribution aligns with the ongoing efforts to refine forecasting methodologies and addresses the pertinent challenges within power peak load forecasting.

  • VH-YOLOv5s: Detecting the Skin Color of Plectropomus leopardus in Aquaculture Using Mobile Phones Open Access

    Beibei LI  Xun RAN  Yiran LIU  Wensheng LI  Qingling DUAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/03/04
      Vol:
    E107-D No:7
      Page(s):
    835-844

    Fish skin color detection plays a critical role in aquaculture. However, challenges arise from image color cast and the limited dataset, impacting the accuracy of the skin color detection process. To address these issues, we proposed a novel fish skin color detection method, termed VH-YOLOv5s. Specifically, we constructed a dataset for fish skin color detection to tackle the limitation posed by the scarcity of available datasets. Additionally, we proposed a Variance Gray World Algorithm (VGWA) to correct the image color cast. Moreover, the designed Hybrid Spatial Pyramid Pooling (HSPP) module effectively performs multi-scale feature fusion, thereby enhancing the feature representation capability. Extensive experiments have demonstrated that VH-YOLOv5s achieves excellent detection results on the Plectropomus leopardus skin color dataset, with a precision of 91.7%, recall of 90.1%, mAP@0.5 of 95.2%, and mAP@0.5:0.95 of 57.5%. When compared to other models such as Centernet, AutoAssign, and YOLOX-s, VH-YOLOv5s exhibits superior detection performance, surpassing them by 2.5%, 1.8%, and 1.7%, respectively. Furthermore, our model can be deployed directly on mobile phones, making it highly suitable for practical applications.

  • Research on the Switch Migration Strategy Based on Global Optimization Open Access

    Xiao’an BAO  Shifan ZHOU  Biao WU  Xiaomei TU  Yuting JIN  Qingqi ZHANG  Na ZHANG  

     
    PAPER-Information Network

      Pubricized:
    2024/03/25
      Vol:
    E107-D No:7
      Page(s):
    825-834

    With the popularization of software defined networks, switch migration as an important network management strategy has attracted increasing attention. Most existing switch migration strategies only consider local conditions and simple load thresholds, without fully considering the overall optimization and dynamics of the network. Therefore, this article proposes a switch migration algorithm based on global optimization. This algorithm adds a load prediction module to the migration model, determines the migration controller, and uses an improved whale optimization algorithm to determine the target controller and its surrounding controller set. Based on the load status of the controller and the traffic priority of the switch to be migrated, the optimal migration switch set is determined. The experimental results show that compared to existing schemes, the algorithm proposed in this paper improves the average flow processing efficiency by 15% to 40%, reduces switch migration times, and enhances the security of the controller.

  • A VVC Dependent Quantization Optimization Based on the Parallel Viterbi Algorithm and Its FPGA Implementation Open Access

    Qinghua SHENG  Yu CHENG  Xiaofang HUANG  Changcai LAI  Xiaofeng HUANG  Haibin YIN  

     
    PAPER-Computer System

      Pubricized:
    2024/03/04
      Vol:
    E107-D No:7
      Page(s):
    797-806

    Dependent Quantization (DQ) is a new quantization tool introduced in the Versatile Video Coding (VVC) standard. While it provides better rate-distortion calculation accuracy, it also increases the computational complexity and hardware cost compared to the widely used scalar quantization. To address this issue, this paper proposes a parallel-dependent quantization hardware architecture using Verilog HDL language. The architecture preprocesses the coefficients with a scalar quantizer and a high-frequency filter, and then further segments and processes the coefficients in parallel using the Viterbi algorithm. Additionally, the weight bit width of the rate-distortion calculation is reduced to decrease the quantization cycle and computational complexity. Finally, the final quantization of the TU is determined through sequential scanning and judging of the rate-distortion cost. Experimental results show that the proposed algorithm reduces the quantization cycle by an average of 56.96% compared to VVC’s reference platform VTM, with a Bjøntegaard delta bit rate (BDBR) loss of 1.03% and 1.05% under the Low-delay P and Random Access configurations, respectively. Verification on the AMD FPGA development platform demonstrates that the hardware implementation meets the quantization requirements for 1080P@60Hz video hardware encoding.

  • Determination Method of Cascaded Number for Lumped Parameter Models Oriented to Transmission Lines Open Access

    Risheng QIN  Hua KUANG  He JIANG  Hui YU  Hong LI  Zhuan LI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/12/20
      Vol:
    E107-C No:7
      Page(s):
    201-209

    This paper proposes a determination method of the cascaded number for lumped parameter models (LPMs) of the transmission lines. The LPM is used to simulate long-distance transmission lines, and the cascaded number significantly impacts the simulation results. Currently, there is a lack of a system-level determination method of the cascaded number for LPMs. Based on the theoretical analysis and eigenvalue decomposition of network matrix, this paper discusses the error in resonance characteristics between distributed parameter model and LPMs. Moreover, it is deduced that optimal cascaded numbers of the cascaded π-type and T-type LPMs are the same, and the Γ-type LPM has a lowest analog accuracy. The principle that the maximum simulation frequency is less than the first resonance frequency of each segment is presented. According to the principle, optimal cascaded numbers of cascaded π-type, T-type, and Γ-type LPMs are obtained. The effectiveness of the proposed determination method is verified by simulation.

  • Soft-Error Tolerance by Guard-Gate Structures on Flip-Flops in 22 and 65 nm FD-SOI Technologies Open Access

    Ryuichi NAKAJIMA  Takafumi ITO  Shotaro SUGITANI  Tomoya KII  Mitsunori EBARA  Jun FURUTA  Kazutoshi KOBAYASHI  Mathieu LOUVAT  Francois JACQUET  Jean-Christophe ELOY  Olivier MONTFORT  Lionel JURE  Vincent HUARD  

     
    PAPER

      Pubricized:
    2024/01/23
      Vol:
    E107-C No:7
      Page(s):
    191-200

    We evaluated soft-error tolerance by heavy-ion irradiation test on three-types of flip-flops (FFs) named the standard FF (STDFF), the dual feedback recovery FF (DFRFF), and the DFRFF with long delay (DFRFFLD) in 22 and 65 nm fully-depleted silicon on insulator (FD-SOI) technologies. The guard-gate (GG) structure in DFRFF mitigates soft errors. A single event transient (SET) pulse is removed by the C-element with the signal delayed by the GG structure. DFRFFLD increases the GG delay by adding two more inverters as delay elements. We investigated the effectiveness of the GG structure in 22 and 65 nm. In 22 nm, Kr (40.3 MeV-cm2/mg) and Xe (67.2 MeV-cm2/mg) irradiation tests revealed that DFRFFLD has sufficient soft-error tolerance in outer space. In 65 nm, the relationship between GG delay and CS reveals the GG delay time which no error was observed under Kr irradiation.

  • RAN Slicing with Inter-Cell Interference Control and Link Adaptation for Reliable Wireless Communications Open Access

    Yoshinori TANAKA  Takashi DATEKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E107-B No:7
      Page(s):
    513-528

    Efficient multiplexing of ultra-reliable and low-latency communications (URLLC) and enhanced mobile broadband (eMBB) traffic, as well as ensuring the various reliability requirements of these traffic types in 5G wireless communications, is becoming increasingly important, particularly for vertical services. Interference management techniques, such as coordinated inter-cell scheduling, can enhance reliability in dense cell deployments. However, tight inter-cell coordination necessitates frequent information exchange between cells, which limits implementation. This paper introduces a novel RAN slicing framework based on centralized frequency-domain interference control per slice and link adaptation optimized for URLLC. The proposed framework does not require tight inter-cell coordination but can fulfill the requirements of both the decoding error probability and the delay violation probability of each packet flow. These controls are based on a power-law estimation of the lower tail distribution of a measured data set with a smaller number of discrete samples. As design guidelines, we derived a theoretical minimum radio resource size of a slice to guarantee the delay violation probability requirement. Simulation results demonstrate that the proposed RAN slicing framework can achieve the reliability targets of the URLLC slice while improving the spectrum efficiency of the eMBB slice in a well-balanced manner compared to other evaluated benchmarks.

101-120hit(30728hit)