Takumasa ISHIOKA Tatsuya FUKUI Toshihito FUJIWARA Satoshi NARIKAWA Takuya FUJIHASHI Shunsuke SARUWATARI Takashi WATANABE
Cloud gaming systems allow users to play games that require high-performance computational capability on their mobile devices at any location. However, playing games through cloud gaming systems increases the Round-Trip Time (RTT) due to increased network delay. To simulate a local gaming experience for cloud users, we must minimize RTTs, which include network delays. The speculative video transmission pre-generates and encodes video frames corresponding to all possible user inputs and sends them to the user before the user’s input. The speculative video transmission mitigates the network, whereas a simple solution significantly increases the video traffic. This paper proposes tile-wise delta detection for traffic reduction of speculative video transmission. More specifically, the proposed method determines a reference video frame from the generated video frames and divides the reference video frame into multiple tiles. We calculate the similarity between each tile of the reference video frame and other video frames based on a hash function. Based on calculated similarity, we determine redundant tiles and do not transmit them to reduce traffic volume in minimal processing time without implementing a high compression ratio video compression technique. Evaluations using commercial games showed that the proposed method reduced 40-50% in traffic volume when the SSIM index was around 0.98 in certain genres, compared with the speculative video transmission method. Furthermore, to evaluate the feasibility of the proposed method, we investigated the effectiveness of network delay reduction with existing computational capability and the requirements in the future. As a result, we found that the proposed scheme may mitigate network delay by one to two frames, even with existing computational capability under limited conditions.
Kenshi OGAWA Masashi KUROSAKI Ryohei NAKAMURA
With the development of drone technology, concerns have arisen about the possibility of drones being equipped with threat payloads for terrorism and other crimes. A drone detection system that can detect drones carrying payloads is needed. A drone’s propeller rotation frequency increases with payload weight. Therefore, a method for estimating propeller rotation frequency will effectively detect the presence or absence of a payload and its weight. In this paper, we propose a method for classifying the payload weight of a drone by estimating its propeller rotation frequency from radar images obtained using a millimeter-wave fast-chirp-modulation multiple-input and multiple-output (MIMO) radar. For each drone model, the proposed method requires a pre-prepared reference dataset that establishes the relationships between the payload weight and propeller rotation frequency. Two experimental measurement cases were conducted to investigate the effectiveness of our proposal. In case 1, we assessed four drones (DJI Matrice 600, DJI Phantom 3, DJI Mavic Pro, and DJI Mavic Mini) to determine whether the propeller rotation frequency of any drone could be correctly estimated. In case 2, experiments were conducted on a hovering Phantom 3 drone with several payloads in a stable position for calculating the accuracy of the payload weight classification. The experimental results indicated that the proposed method could estimate the propeller rotation frequency of any drone and classify payloads in a 250 g step with high accuracy.
Duc Minh NGUYEN Hiroshi SHIRAI Se-Yun KIM
In this study, the edge diffraction of a TM-polarized electromagnetic plane wave by two-dimensional dielectric wedges has been analyzed. An asymptotic solution for the radiation field has been derived from equivalent electric and magnetic currents which can be determined by the geometrical optics (GO) rays. This method may be regarded as an extended version of physical optics (PO). The diffracted field has been represented in terms of cotangent functions whose singularity behaviors are closely related to GO shadow boundaries. Numerical calculations are performed to compare the results with those by other reference solutions, such as the hidden rays of diffraction (HRD) and a numerical finite-difference time-domain (FDTD) simulation. Comparisons of the diffraction effect among these results have been made to propose additional lateral waves in the denser media.
Yuanhe XUE Wei YAN Xuan LIU Mengxia ZHOU Yang ZHAO Hao MA
Model-based sensorless control of permanent magnet synchronous motor (PMSM) is promising for high-speed operation to estimate motor state, which is the speed and the position of the rotor, via electric signals of the stator, beside the inevitable fact that estimation accuracy is degraded by electromagnet interference (EMI) from switching devices of the converter. In this paper, the simulation system based on Luenberger observer and phase-locked loop (PLL) has been established, analyzing impacts of EMI on motor state estimations theoretically, exploring influences of EMI with different cutoff frequency, rated speeds, frequencies and amplitudes. The results show that Luenberger observer and PLL have strong immunity, which enable PMSM can still operate stably even under certain degrees of interference. EMI produces sideband harmonics that enlarge pulsation errors of speed and position estimations. Additionally, estimation errors are positively correlated with cutoff frequency of low-pass filter and the amplitude of EMI, and negatively correlated with rated speed of the motor and the frequency of EMI. When the frequency is too high, its effects on motor state estimations are negligible. This work contributes to the comprehensive understanding of how EMI affects motor state estimations, which further enhances practical application of sensorless PMSM.
To reduce the common mode voltage (CMV), suppress the CMV spikes, and improve the steady-state performance, a simplified reactive torque model predictive control (RT-MPC) for induction motors (IMs) is proposed. The proposed prediction model can effectively reduce the complexity of the control algorithm with the direct torque control (DTC) based voltage vector (VV) preselection approach. In addition, the proposed CMV suppression strategy can restrict the CMV within ±Vdc/6, and does not require the exclusion of non-adjacent non-opposite VVs, thus resulting in the system showing good steady-state performance. The effectiveness of the proposed design has been tested and verified by the practical experiment. The proposed algorithm can reduce the execution time by an average of 26.33% compared to the major competitors.
Yoshihiro NAKA Masahiko NISHIMOTO Mitsuhiro YOKOTA
An efficient optical power splitter constructed by a metal-dielectric-metal plasmonic waveguide with a resonator structure has been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator structure consists of input/output waveguides and a narrow waveguide with a T-junction. The power splitter with the resonator structure is expressed by an equivalent transmission-line circuit. We can find that the transmittance and reflectance calculated by the FD-TD method and the equivalent circuit are matched when the difference in width between the input/output waveguides and the narrow waveguide is small. It is also shown that the transmission wavelength can be adjusted by changing the narrow waveguide lengths that satisfy the impedance matching condition in the equivalent circuit.
Shotaro YASUMORI Seiya MORIKAWA Takanori SATO Tadashi KAWAI Akira ENOKIHARA Shinya NAKAJIMA Kouichi AKAHANE
An optical mode multiplexer was newly designed and fabricated using LiNbO3 waveguides. The multiplexer consists of an asymmetric directional coupler capable of achieving the phase-matching condition by the voltage adjustment. The mode conversion efficiency between TM0 and TM1 modes was quantitatively measured to be 0.86 at maximum.
Previously a method was reported to determine the mathematical representation of the microwave oscillator admittance by using numerical calculation. When analyzing the load characteristics and synchronization phenomena by using this formula, the analysis results meet with the experimental results. This paper describes a method to determine the mathematical representation manually.
Junko SHIROGANE Daisuke SAYAMA Hajime IWATA Yoshiaki FUKAZAWA
Webpage texts are often emphasized by decorations such as bold, italic, underline, and text color using HTML (HyperText Markup Language) tags and CSS (Cascading Style Sheets). However, users with visual impairment often struggle to recognize decorations appropriately because most screen readers do not read decorations appropriately. To overcome this limitation, we propose a method to read emphasized texts by changing the reading voice parameters of a screen reader and adding sound effects. First, the strong emphasis types and reading voices are investigated. Second, the intensity of the emphasis type is used to calculate a score. Then the score is used to assign the reading method for the emphasized text. Finally, the proposed method is evaluated by users with and without visual impairment. The proposed method can convey emphasized texts, but future improvements are necessary.
Shinpei HAYASHI Teppei KATO Motoshi SAEKI
Use case descriptions describe features consisting of multiple concepts with following a procedural flow. Because existing feature location techniques lack a relation between concepts in such features, it is difficult to identify the concepts in the source code with high accuracy. This paper presents a technique to locate concepts in a feature described in a use case description consisting of multiple use case steps using dependency between them. We regard each use case step as a description of a concept and apply an existing concept location technique to the descriptions of concepts and obtain lists of modules. Also, three types of dependencies: time, call, and data dependencies among use case steps are extracted based on their textual description. Modules in the obtained lists failing to match the dependency between concepts are filtered out. Thus, we can obtain more precise lists of modules. We have applied our technique to use case descriptions in a benchmark. Results show that our technique outperformed baseline setting without applying the filtering.
Kota CHIN Keita EMURA Shingo SATO Kazumasa OMOTE
In an open-bid auction, a bidder can know the budgets of other bidders. Thus, a sealed-bid auction that hides bidding prices is desirable. However, in previous sealed-bid auction protocols, it has been difficult to provide a “fund binding” property, which would guarantee that a bidder has funds more than or equal to the bidding price and that the funds are forcibly withdrawn when the bidder wins. Thus, such protocols are vulnerable to a false bidding. As a solution, many protocols employ a simple deposit method in which each bidder sends a deposit to a smart contract, which is greater than or equal to the bidding price, before the bidding phase. However, this deposit reveals the maximum bidding price, and it is preferable to hide this information. In this paper, we propose a sealed-bid auction protocol that provides a fund binding property. Our protocol not only hides the bidding price and a maximum bidding price, but also provides a fund binding property, simultaneously. For hiding the maximum bidding price, we pay attention to the fact that usual Ethereum transactions and transactions for sending funds to a one-time address have the same transaction structure, and it seems that they are indistinguishable. We discuss how much bidding transactions are hidden. We also employ DECO (Zhang et al., CCS 2020) that proves the validity of the data to a verifier in which the data are taken from a source without showing the data itself. Finally, we give our implementation which shows transaction fees required and compare it to a sealed-bid auction protocol employing the simple deposit method.
Savong BOU Toshiyuki AMAGASA Hiroyuki KITAGAWA
Forecasting time-series data is useful in many fields, such as stock price predicting system, autonomous driving system, weather forecast, etc. Many existing forecasting models tend to work well when forecasting short-sequence time series. However, when working with long sequence time series, the performance suffers significantly. Recently, there has been more intense research in this direction, and Informer is currently the most efficient predicting model. Informer’s main drawback is that it does not allow for incremental learning. In this paper, we propose a Fast Informer called Finformer, which addresses the above bottleneck by reducing the training/predicting time of Informer. Finformer can efficiently compute the positional/temporal/value embedding and Query/Key/Value of the self-attention incrementally. Theoretically, Finformer can improve the speed of both training and predicting over the state-of-the-art model Informer. Extensive experiments show that Finformer is about 26% faster than Informer for both short and long sequence time series prediction. In addition, Finformer is about 20% faster than InTrans for the general Conv1d, which is one of our previous works and is the predecessor of Finformer.
The study proposes a personalised session-based recommender system that embeds items by using Word2Vec and sequentially updates the session and user embeddings with the hierarchicalization and aggregation of item embeddings. To process a recommendation request, the system constructs a real-time user embedding that considers users’ general preferences and sequential behaviour to handle short-term changes in user preferences with a low computational cost. The system performance was experimentally evaluated in terms of the accuracy, diversity, and novelty of the ranking of recommended items and the training and prediction times of the system for three different datasets. The results of these evaluations were then compared with those of the five baseline systems. According to the evaluation experiment, the proposed system achieved a relatively high recommendation accuracy compared with baseline systems and the diversity and novelty scores of the proposed system did not fall below 90% for any dataset. Furthermore, the training times of the Word2Vec-based systems, including the proposed system, were shorter than those of FPMC and GRU4Rec. The evaluation results suggest that the proposed recommender system succeeds in keeping the computational cost for training low while maintaining high-level recommendation accuracy, diversity, and novelty.
Ayano OKOSO Keisuke OTAKI Yoshinao ISHII Satoshi KOIDE
Owing to the COVID-19 pandemic, many academic conferences are now being held online. Our study focuses on online video conferences, where participants can watch pre-recorded embedded videos on a conference website. In online video conferences, participants must efficiently find videos that match their interests among many candidates. There are few opportunities to encounter videos that they may not have planned to watch but may be of interest to them unless participants actively visit the conference. To alleviate these problems, the introduction of a recommender system seems promising. In this paper, we implemented typical recommender systems for the online video conference with 4,000 participants and analyzed users’ behavior through A/B testing. Our results showed that users receiving recommendations based on collaborative filtering had a higher continuous video-viewing rate and spent longer on the website than those without recommendations. In addition, these users were exposed to broader videos and tended to view more from categories that are usually less likely to view together. Furthermore, the impact of the recommender system was most significant among users who spent less time on the site.
Satoshi ITO Tomoaki KANAYA Akihiro NAKAO Masato OGUCHI Saneyasu YAMAGUCHI
The concepts of programmable switches and software-defined networking (SDN) give developers flexible and deep control over the behavior of switches. We expect these concepts to dramatically improve the functionality of switches. In this paper, we focus on the concept of Deeply Programmable Networks (DPN), where data planes are programmable, and application switches based on DPN. We then propose a method to improve the performance of a key-value store (KVS) through an application switch. First, we explain the DPN and application switches. The DPN is a network that makes not only control planes but also data planes programmable. An application switch is a switch that implements some functions of network applications, such as database management system (DBMS). Second, we propose a method to improve the performance of Cassandra, one of the most popular key-value based DBMS, by implementing a caching function in a switch in a dedicated network such as a data center. The proposed method is expected to be effective even though it is a simple and traditional way because it is in the data path and the center of the network application. Third, we implement a switch with the caching function, which monitors the accessed data described in packets (Ethernet frames) and dynamically replaces the cached data in the switch, and then show that the proposed caching switch can significantly improve the KVS transaction performance with this implementation. In the case of our evaluation, our method improved the KVS transaction throughput by up to 47%.
Kensuke SUMOTO Kenta KANAKOGI Hironori WASHIZAKI Naohiko TSUDA Nobukazu YOSHIOKA Yoshiaki FUKAZAWA Hideyuki KANUKA
Security-related issues have become more significant due to the proliferation of IT. Collating security-related information in a database improves security. For example, Common Vulnerabilities and Exposures (CVE) is a security knowledge repository containing descriptions of vulnerabilities about software or source code. Although the descriptions include various entities, there is not a uniform entity structure, making security analysis difficult using individual entities. Developing a consistent entity structure will enhance the security field. Herein we propose a method to automatically label select entities from CVE descriptions by applying the Named Entity Recognition (NER) technique. We manually labeled 3287 CVE descriptions and conducted experiments using a machine learning model called BERT to compare the proposed method to labeling with regular expressions. Machine learning using the proposed method significantly improves the labeling accuracy. It has an f1 score of about 0.93, precision of about 0.91, and recall of about 0.95, demonstrating that our method has potential to automatically label select entities from CVE descriptions.
Keisuke KAWANO Satoshi KOIDE Hiroaki SHIOKAWA Toshiyuki AMAGASA
Graph dissimilarities provide a powerful and ubiquitous approach for applying machine learning algorithms to edge-attributed graphs. However, conventional optimal transport-based dissimilarities cannot handle edge-attributes. In this paper, we propose an optimal transport-based dissimilarity between graphs with edge-attributes. The proposed method, multi-dimensional fused Gromov-Wasserstein discrepancy (MFGW), naturally incorporates the mismatch of edge-attributes into the optimal transport theory. Unlike conventional optimal transport-based dissimilarities, MFGW can directly handle edge-attributes in addition to structural information of graphs. Furthermore, we propose an iterative algorithm, which can be computed on GPUs, to solve non-convex quadratic programming problems involved in MFGW. Experimentally, we demonstrate that MFGW outperforms the conventional optimal transport-based dissimilarity in several machine learning applications including supervised classification, subgraph matching, and graph barycenter calculation.
Haijun ZHOU Weixiang LI Ming CHENG Yuan SUN
Traditional intuitionistic fuzzy sets and hesitant fuzzy sets will lose some information while representing vague information, to avoid this problem, this paper constructs weighted generalized hesitant fuzzy sets by remaining multiple intuitionistic fuzzy values and giving them corresponding weights. For weighted generalized hesitant fuzzy elements in weighted generalized hesitant fuzzy sets, the paper defines some basic operations and proves their operation properties. On this basis, the paper gives the comparison rules of weighted generalized hesitant fuzzy elements and presents two kinds of aggregation operators. As for weighted generalized hesitant fuzzy preference relation, this paper proposes its definition and computing method of its corresponding consistency index. Furthermore, the paper designs an ensemble learning algorithm based on weighted generalized hesitant fuzzy sets, carries out experiments on 6 datasets in UCI database and compares with various classification algorithms. The experiments show that the ensemble learning algorithm based on weighted generalized hesitant fuzzy sets has better performance in all indicators.
Nawras KHUDHUR Aryo PINANDITO Yusuke HAYASHI Tsukasa HIRASHIMA
This study investigates the efficacy of a partial decomposition approach in concept map recomposition tasks to reduce cognitive load while maintaining the benefits of traditional recomposition approaches. Prior research has demonstrated that concept map recomposition, involving the rearrangement of unconnected concepts and links, can enhance reading comprehension. However, this task often imposes a significant burden on learners’ working memory. To address this challenge, this study proposes a partial recomposition approach where learners are tasked with recomposing only a portion of the concept map, thereby reducing the problem space. The proposed approach aims at lowering the cognitive load while maintaining the benefits of traditional recomposition task, that is, learning effect and motivation. To investigate the differences in cognitive load, learning effect, and motivation between the full decomposition (the traditional approach) and partial decomposition (the proposed approach), we have conducted an experiment (N=78) where the participants were divided into two groups of “full decomposition” and “partial decomposition”. The full decomposition group was assigned the task of recomposing a concept map from a set of unconnected concept nodes and links, while the partial decomposition group worked with partially connected nodes and links. The experimental results show a significant reduction in the embedded cognitive load of concept map recomposition across different dimensions while learning effect and motivation remained similar between the conditions. On the basis of these findings, educators are recommended to incorporate partially disconnected concept maps in recomposition tasks to optimize time management and sustain learner motivation. By implementing this approach, instructors can conserve cognitive resources and allocate saved energy and time to other activities that enhance the overall learning process.
Chunhua QIAN Xiaoyan QIN Hequn QIANG Changyou QIN Minyang LI
The segmentation performance of fresh tea sprouts is inadequate due to the uncontrollable posture. A novel method for Fresh Tea Sprouts Segmentation based on Capsule Network (FTS-SegCaps) is proposed in this paper. The spatial relationship between local parts and whole tea sprout is retained and effectively utilized by a deep encoder-decoder capsule network, which can reduce the effect of tea sprouts with uncontrollable posture. Meanwhile, a patch-based local dynamic routing algorithm is also proposed to solve the parameter explosion problem. The experimental results indicate that the segmented tea sprouts via FTS-SegCaps are almost coincident with the ground truth, and also show that the proposed method has a better performance than the state-of-the-art methods.