The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

19801-19820hit(22683hit)

  • Parameter-Free Restoration Algorithms for Two Classes of Binary MRF Images Degraded by Flip-Flap Noises

    Bing ZHANG  Mehdi N. SHIRAZI  Hideki NODA  

     
    PAPER-Image Theory

      Vol:
    E80-A No:10
      Page(s):
    2022-2031

    The problem of restoring binary (black and white) images degraded by color-dependent flip-flap noises is considered. The real image is modeled by a Markov Random Field (MRF). The Iterated Conditional Modes (ICM) algorithm is adopted. It is shown that under certain conditions the ICM algorithm is insensitive to the MRF image model and noise parameters. Using this property, we propose a parameter-free restoration algorithm which does not require the estimations of the image model and noise parameters and thus can be implemented fully in parallel. The effectiveness of the proposed algorithm is shown through applying the algorithm to degraded hand-drawn and synthetic images.

  • ASAver.1: An FPGA-Based Education Board for Computer Architecture/System Design

    Hiroyuki OCHI  Yoko KAMIDOI  Hideyuki KAWABATA  

     
    PAPER

      Vol:
    E80-A No:10
      Page(s):
    1826-1833

    This paper proposes a new approach that makes it possible for every undergraduate student to perform experiments of developing a Ipipelined RISC processor within limited time available for the course. The approach consists of 4 steps. At the first step, every student implements by himself/herself a pipelined RISC processor which is based on a given, very simple model; it has separate buses for instruction and data memory ("Harvard architecture") to avoid structural hazard, while it completely ignores data control hazards to make implementation easy. Although it is such a "defective" processor, we can test its functionality by giving object code containing sufficient amount of NOP instructions to avoid hazards. At the second step, NOP instructions are deleted and behavior of the developed processor is observed carefully to understand data and control hazards. At the third step, benchmark problems are provided, and every student challenges to improve its performance. Finally every student is requested to present how he/she improved the processor. This paper also describes a new educational FPGA board ASAver.1 which is useful for experiments from introductory class to computer architecture/system class. As a feasibility study, a 16-bit pipelined RISC processor "ASAP-O" has been developed which has eight 16-bit general purpose registers, a 16-bit program counter, and a zero flag, with 10 essential instructions.

  • Ultrafast Optical Response and Terahertz Radiation from High-Tc Superconductor

    Masanori HANGYO  Noboru WADA  Masayoshi TONOUCHI  Masahiko TANI  Kiyomi SAKAI  

     
    INVITED PAPER

      Vol:
    E80-C No:10
      Page(s):
    1282-1290

    New THz radiation devices made of high-Tc superconductors are fabricated and their characteristics are studied in detail. Ultrashort electromagnetic pulses with 0.5 ps width have been radiated into free space from current biased devices made of superconducting YBa2Cu3O7 (YBCO) films by exciting with femtosecond laser pulses. The Fourier spectrum of them extends up to 3 THz. The radiation mechanism is ascribed to the ultrafast supercurrent modulation by the optical pulses. The THz waveform is analyzed using rate equations describing the relaxation of photoexcited quasiparticles. By the improvement of the device structure and the collecting optics, the radiation power can be increased up to 0.5 µW. A new type THz radiation from YBCO films under an external magnetic field without a transport current is also reported.

  • NbN/AIN/NbN Tunnel Junctions Applied as Terahertz SIS Mixers

    Zhen WANG  Yoshinori UZAWA  Akira KAWAKAMI  

     
    INVITED PAPER

      Vol:
    E80-C No:10
      Page(s):
    1258-1264

    We report on progress in the development of high-current-density all-NbN tunnel junctions for application as submillimeter wave SIS mixers. A very high current density up to 54 kA/cm2, roughly an order of magnitude larger than any reported results for all-NbN tunnel junctions, was achieved in the junctions with a thin aluminum nitride (AIN) tunnel barrier. Even though the junctions have a very high current density, they showed high-quality junction characteristics with a large gap voltage, sharp quasipartical current rise, and small subgap leakage current. The junctions also exhibited good Josephson tunneling behavior, excellent terahertz response, and sensitive heterodyne mixing properties. NbN/AIN/NbN tunnel junctions were integrated with a NbN thin-film antenna to investigate the terahertz responses and the heterodyne mixing properties in a quasioptical mixer testing system. Photon-assisted tunneling steps were clearly observed on the I-V curve with irradiation up to 1 THz, and low-noise heterodyne mixing was demonstrated in the 300-GHz band.

  • New Reduction Mechanism of the Stress Leakage Current Based on the Deactivation of Step Tunneling Sites for Thin Oxide Films

    Tetsuo ENDOH  Kazuyosi SHIMIZU  Hirohisa IIZUKA  Fujio MASUOKA  

     
    PAPER-Integrated Electronics

      Vol:
    E80-C No:10
      Page(s):
    1310-1316

    This paper describes a new reduction mechanism of the stress induced leakage current that is induced by step tunneling of electrons through the step tunneling sites. The concept of this mechanism is based on the deactivation of step tunneling sites for thin oxide. It is verified that the deactivation is electrically realized by the injected electrons int the sites. It is because the step tunneling probability of electrons though the deactivated sites is suppressed, since the electron capture cross section of the neutralized deactivation sites becomes extremely low. The deactivation scheme is as follows: (1) The deactivation of tunneling sites can be realized that the tunneling sites trapped holes change to neutralized tunneling sites due to electrons injection. (2) The injected electron can deactivate the activation tunneling sites only under energy level than the energy level of the injected electrons. It is shown that the above reduction phenomenon can be quantifiably with formulation. These results are very important for high reliable thin oxide films and for high performance ULSI.

  • Analysis and Elimination of the Reflection lnfluence on Microwave Attenuation Measurement for Moisture Determination

    Zhihong MA  Seichi OKAMURA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E80-C No:10
      Page(s):
    1324-1329

    An analysis is carried out about the reflection influence on the microwave attenuation measurement for moisture content determination. A new method taking into account the reflection influence is proposed and it is proved valid by the experiment results. Using this method, the density dependence of the attenuation is measured and the measured data can be fitted well by a straight line passing through the origin. Therefore, the attenuation per unit density and propagation distance is a function which depends only on the moisture content and the function is useful to the determination of the moisture content.

  • Millimeter- and Submillimeter-Wave Phase-Locking in High-Tc Josephson Junction Arrays

    Kiejin LEE  Ienari IGUCHI  Karen Y. CONSTANTINIAN  Gennady A. OVSYANNIKOV  Jeha KIM  Kwang-Yong KANG  

     
    PAPER

      Vol:
    E80-C No:10
      Page(s):
    1275-1281

    We report the strong microwave Josephson radiation from an array of high-Tc junctions on a MgO bicrystal substrate from centimeter- to millimeter-wave ranges. The dc bias current was fed to the junction array having parallel geometry with the pair of junctions shunted by superconducting loops. The configuration of bias leads was a series of interlocking dc SQUID's geometry which guaranteed the oscillation of all junctions at the same frequency. For a five-junctions array, we observed the coherent output power of about 13 pW at receiving frequency fREC22GHz without an external magnetic flux, which was nearly five times higher than that of a single bicrystal junction. We observed the Josephson linewidth of the selfradiation in coherent state less than 1 GHz by the adjustment of the external flux. The phase differences between adjacent junctions with different IcRn products could be controlled by an external small magnetic field. Submillimeter-wave detector response of the five-junction array was also studied experimentally at frequency f478 GHz.

  • Embedded System Cost Optimization via Data Path Width Adjustment

    Barry SHACKLEFORD  Mitsuhiro YASUDA  Etsuko OKUSHI  Hisao KOIZUMI  Hiroyuki TOMIYAMA  Akihiko INOUE  Hiroto YASUURA  

     
    PAPER-High Level Synthesis

      Vol:
    E80-D No:10
      Page(s):
    974-981

    Entire systems embedded in a chip and consisting of a processor, memory, and system-specific peripheral hardware are now commonly contained in commodity electronic devices. Cost minimization of these systems is of paramount economic importance to manufactures of these devices. By employing a variable configuration processor in conjunction with a multi-precision compiler generator, we show that there are situations in which considerable system cost reduction can be obtained by synthesizing a CPU that is narrower than the largest variable in the application program.

  • Minimization of AND-OR-EXOR Three-Level Networks with AND Gate Sharing

    Debatosh DEBNATH  Tsutomu SASAO  

     
    PAPER-Logic Design

      Vol:
    E80-D No:10
      Page(s):
    1001-1008

    This paper presents an exact minimization algorithm for AND-OR-EXOR three-level networks, where a single two-input exclusive-OR (EXOR) gate is used. The network realizes an EXOR of two sum-of-products expressions (EX-SOP), where the two sum-of-products expressions (SOP) can share products. The objective is to minimize the total number of different products in the two SOPs. An algorithm for the exact minimization of EX-SOPs with up to five variables are shown. Up to five variables, EX-SOPs for all the representative functions of NP-equivalence classes were minimized. For five-variable functions, we confirmed that minimum EX-SOPs require up to 9 products. For n-variable functions, minimum EX-SOPs require at most 92n-5 (n6) products.

  • On the Stability of Operating Points of Transistor Circuits

    Tetsuo NISHI  Masato OGATA  

     
    PAPER

      Vol:
    E80-A No:9
      Page(s):
    1540-1547

    In this paper we study on the stability of an operating points of a nonlinear resistive circuits including transistors. A set of sufficient conditions for the operating point to be unstable are proposed. These conditions are a generalization of the well-known negative difference resistance (NDR) criteria.

  • Interference Cancellation Characteristics of a BSCMA Adaptive Array Antenna with a DBF Configuration

    Toyohisa TANAKA  Ryu MIURA  Isamu CHIBA  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:9
      Page(s):
    1363-1371

    We have developed a Beam Space CMA (Constant Modulus Algorithm) Adaptive Array Antenna system (BSCMA adaptive array antenna) that may be suitable for mobile communications. In this paper, we present experimental results of interference cancellation characteristics using the developed system. The experiment was carried out in a large radio anechoic chamber, while desired and interference signals were transmitted to the system. We focused on the characteristics of capture, convergence and tracking in adaptive processing. The experimental results show excellent interference cancellation characteristics, and demonstrate that the BSCMA adaptive array antenna has a greater feasibility to be applied practically in mobile communications.

  • Experimental Study of Nonlinear Transition Shift in Perpendicular Magnetic Recording with Single-Pole Head

    Hiroaki MURAOKA  Yoshihisa NAKAMURA  

     
    PAPER

      Vol:
    E80-C No:9
      Page(s):
    1187-1193

    Nonlinear phenomena in perpendicular magnetic recording employing a single-pole head and a double-layered medium were investigated. First, measurement of linear superposition in the time domain indicated than the amount of nonlinear transition shift (NLTS) was less than 10 nm. It was concluded that the nonlinearity was caused by transition shift, not by waveform distortion. By interpreting the results, we proved that the NLTS was strongly related with head field gradient and interference field from recorded magnetization. Dependence on head parameter was examined by experiments. Based on the results, a single-pole head with which transition shift can be reduced was proposed. Pseudo-random sequence analysis revealed that NLTS was several percent even at 318 kFRPI, or at a bit interval of 80 nm, which agreed with the result of measurement of linear superposition in the time domain analysis. Experiments showed that NLTS increases the shortest bit length, in contrast with the case of longitudinal recording.

  • Block Loss Recovery using Sequential Projections onto the Feature Vectors

    Joon-Ho CHANG  Choong Woong LEE  

     
    PAPER-Image Theory

      Vol:
    E80-A No:9
      Page(s):
    1714-1720

    In this paper, we present an error concealment method to recover damaged blocks for block-based image coding schemes. Imperfect transmission of image data results in damaged blocks in the reconstructed images. Hence recovering damaged image blocks is needed for reliable image communications. To recover damaged blocks is to estimate damaged blocks from the correctly received or undamaged neighborhood information with a priori knowledge about natural images. The recovery problem considered in our method is to estimate a larger block, which consists of a damaged block and the undamaged neighborhood, from the undamaged neighborhood. To find an accurate estimate, a set of the feature vectors is introduced and an estimate is expressed as a linear combination of the feature vectors. The proposed method recoveres damaged blocks by projecting the undamaged neighborhood information onto the feature vectors. The sequential projections onto the feature vectors algorithm is proposed to find the projection coefficients of the feature vectors to minimize the squared difference of an estimate and the undamaged neighborhood information. We tested our algorithm through computer simulations. The experimental results showed the proposed method ourperforms the frequency domain prediction method in the PSNR values by 4.0-5.0dB. Tthe reconstructed images by the proposed method provide a good subjective quality as well as an objective one.

  • A Novel Replication Technique for Detecting and Masking Failures for Parallel Software: Active Parallel Replication

    Adel CHERIF  Masato SUZUKI  Takuya KATAYAMA  

     
    PAPER-Fault Tolerance

      Vol:
    E80-D No:9
      Page(s):
    886-892

    We present a novel replication technique for parallel applications where instances of the replicated application are active on different group of processors called replicas. The replication technique is based on the FTAG (Fault Tolerant Attribute Grammar) computation model. FTAG is a functional and attribute based model. The developed replication technique implements "active parallel replication," that is, all replicas are active and compute concurrently a different piece of the application parallel code. In our model replicas cooperate not only to detect and mask failures but also to perform parallel computation. The replication mechanisms are supported by FTAG run time system and are fully application-transparent. Different novel mechanisms for checkpointing and recovery are developed. In our model during rollback recovery only that part of the computation that was detected faulty is discarded. The replication technique takes full advantage of parallel computing to reduce overall computation time.

  • Adsmith: An Object-Based Distributed Shared Memory System for Networks of Workstations

    Wen-Yew LIANG  Chung-Ta KING  Feipei LAI  

     
    PAPER-Computer Architecture

      Vol:
    E80-D No:9
      Page(s):
    899-908

    This paper introduces an object-based distributed shared memory (DSM) system called Adsmith. The primary goal of Adsmith is to provide a low-cost, portable, and efficient DSM for networks of workstations (NOW). Adsmith achieves this goal by building on top of PVM, a widely supported communication subsystem, as a user-level library and by incorporating many traffic reduction and latency hiding techniques. Issues involved in the design of Adsmith and our solution strategies will be discussed. Preliminary performance evaluation of Adsmith on a network of Pentium computers will be presented. The results show that programs developed with Adsmith can achieve a performance comparable to that developed with PVM.

  • Function of Nonlinear Asymmetrical Neural Networks

    Naohiro ISHII  

     
    PAPER

      Vol:
    E80-A No:9
      Page(s):
    1604-1609

    Nonlinearity is an important factor in the biological neural networks. The motion perception and learning in them have been studied on the simplest type of nonlinearity, multiplication. In this paper, asymmetrical neural networks with nonlinear function, are studied in the biological neural networks. Then, the nonlinear higher-order system is discussed in the neural networks. The second-order system in the nonlinear biological system is shown to play an important role in the movement detection. From the theoretical analysis, it is shown that the third-order one does not contribute to the detection and the fourth-order one becomes to the second-order in the movement detection function. Hassenstein and Reichardt network (1956) and Barlow and Levick network (1965) of movements are similar to the asymmetrical network developed here. To make clear the difference among these asymmetrical networks, we derive α-equation of movement, which shows the detection of movement. During the movement, we also can derive the movement equation, which implies the movement direction regardless of the parameter α.

  • Novel Technologies for High-Performance Hard Disk Drives

    Kohki NODA  Masahiko NAOE  

     
    INVITED PAPER

      Vol:
    E80-C No:9
      Page(s):
    1135-1141

    Since the introduction of magnetoresistive (MR) heads, the areal density of hard disk drives (HDDs) has been increasing at a rate of 60% a year, and has now reached 1.4 Gb/sq. in. The data rate has also been increasing at a rate of 40% or more, and this has recently become a key factor in the ability of multimedia applications to transfer stored data rapidly from the HDD to the PC or workstation. Currently, data rates of around 150 Mb/sec are being implemented in products. In this study, key technologies for increasing both the areal density and the data rate of HDDs are proposed. If they are implemented, an areal density of around 10 Gb/sq. in. and a data rate of 200 Mb/sec or more can be achieved.

  • The RDT Router Chip: A Versatile Router for Supporting a Distributed Shared Memory

    Hiroaki NISHI  Ken-ichiro ANJO  Tomohiro KUDOH  Hideharu AMANO  

     
    PAPER-Interconnection Networks

      Vol:
    E80-D No:9
      Page(s):
    854-862

    JUMP-1 is currently under development by seven Japanese universities to establish techniques for building an efficient distributed shared memory on a massively parallel processor. It provides a coherent cache with reduced hierarchical bit-map directory scheme to achieve cost effective and high performance management. Messages for coherent cache are transferred through a fat tree on the RDT (Recursive Diagonal Torus) interconnection network. RDT router supports versatile functions including multicast and acknowledge combining for the reduced hierarchical bit-map directory scheme. By using 0.5µm BiCMOS SOG technology, it can transfer all packets synchronized with a unique CPU clock (50MHz). Long coaxial cables (4m at maximum) are directly driven with the ECL interface of this chip. Using the dual port RAM, packet buffers allow to push and pull a flit of the packet simultaneously.

  • MINC: Multistage Interconnection Network with Cache Control Mechanism

    Toshihiro HANAWA  Takayuki KAMEI  Hideki YASUKAWA  Katsunobu NISHIMURA  Hideharu AMANO  

     
    PAPER-Interconnection Networks

      Vol:
    E80-D No:9
      Page(s):
    863-870

    A novel approach to the cache coherent Multistage Interconnection Network (MIN) called the MINC (MIN with Cache control mechanism) is proposed. In the MINC, the directory is located only on the shared memory using the Reduced Hierarchical Bit-map Directory schemes (RHBDs). In the RHBD, the bit-map directory is reduced and carried in the packet header for quick multicasting without accessing the directory in each hierarchy. In order to reduce unnecessary packets caused by compacting the bit map in the RHBD, a small cache called the pruning cache is introduced in the switching element. The simulation reveals the pruning cache works most effectively when it is provided in every switching element of the first stage, and it reduces the congestion more than 50% with only 4 entries. The MINC cache control chip with 16 inputs/outputs is implemented on the LPGA (Laser Programmable Gate Array), and works with a 66 MHz clock.

  • Fault-Tolerant Cube-Connected Cycles Architectures Capable of Quick Broadcasting by Using Spare Circuits

    Nobuo TSUDA  

     
    PAPER-Fault Tolerance

      Vol:
    E80-D No:9
      Page(s):
    871-878

    The construction of fault-tolerant processor arrays with interconnections of cube-connected cycles (CCCs) by using an advanced spare-connection scheme for k-out-of-n redundancies called "generalized additional bypass linking" is described. The connection scheme uses bypass links with wired OR connections to spare processing elements (PEs) without external switches, and can reconfigure complete arrays by tolerating faulty portions in these PEs and links. The spare connections are designed as a node-coloring problem of a CCC graph with a minimum distance of 3: the chromatic numbers corresponding to the number of spare PE connections were evaluated theoretically. The proposed scheme can be used for constructing various k-out-of-n configurations capable of quick broadcasting by using spare circuits, and is superior to conventional schemes in terms of extra PE connections and reconfiguration control. In particular, it allows construction of optimal r-fault-tolerant configurations that provide r spare PEs and r extra connections per PE for CCCs with 4x PEs (x: integer) in each cycle.

19801-19820hit(22683hit)