The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] hydrogen(22hit)

1-20hit(22hit)

  • Effect of the State of Catalytic Nanoparticles on the Growth of Vertically Aligned Carbon Nanotubes

    Shohei SAKURAI  Mayu IIDA  Kosei OKUNUKI  Masahito KUSHIDA  

     
    PAPER

      Pubricized:
    2023/01/13
      Vol:
    E106-C No:6
      Page(s):
    208-213

    In this study, vertically aligned carbon nanotubes (VA-CNTs) were grown from filler-added LB films with accumulated AlFe2O4 nanoparticles and palmitic acid (C16) as the filler molecule after different hydrogen reduction temperatures of 500°C and 750°C, and the grown VA-CNTs were compared and evaluated. As a result, VA-CNTs were approximately doubled in length after 500°C hydrogen reduction compared to 750°C hydrogen reduction when AlFe2O4 NPs were used. On the other hand, when the catalyst area ratio was decreased by using palmitic acid, i.e., the distance between CNTs was increased, VA-CNTs rapidly shortened after 500°C hydrogen reduction, and VA-CNTs were no longer obtained even in the range where VA-CNTs were obtained in 750°C hydrogen reduction. The inner and outer diameters of VA-CNTs decreased with decreasing catalyst area ratio at 750°C hydrogen reduction and tended to increase at 500°C hydrogen reduction. The morphology of the catalyst nanoparticles after CVD was observed to change significantly depending on the hydrogen reduction temperature and catalyst area ratio. These observations indicate that the state of the catalyst nanoparticles immediately before the CNT growth process greatly affects the physical properties of the CNTs.

  • Magnetic-Field Dependent Electron Transport of Fe3Si Nanodots

    Jialin WU  Katsunori MAKIHARA  Hai ZHANG  Noriyuki TAOKA  Akio OHTA  Seiichi MIYAZAKI  

     
    PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    616-621

    We fabricated Fe-silicide nanodots (NDs) on an ultrathin SiO2 layer and evaluated changes in electron transport properties with and without magnetic field application. High-density NDs with an areal density as high as ∼1011cm-2 were formed on thermally grown SiO2 by exposing ultrathin Fe/Si-NDs structures to a remote H2 plasma without external heating. In electron transport properties related to current-time characteristics for a diode with Fe electrode and charging energy to NDs, clear changes in current levels through NDs and electron injection modulation of NDs depending on intensity of magnetic fields were observed.

  • Estimating the Birefringence and Absorption Losses of Hydrogen-bonded Liquid Crystals with Alkoxy Chains at 2.5 THz Open Access

    Ryota ITO  Hayato SEKIYA  Michinori HONMA  Toshiaki NOSE  

     
    INVITED PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-C No:2
      Page(s):
    68-71

    Liquid crystal (LC) device has high tunability with low power consumption and it is important not only in visible region but also in terahertz region. In this study, birefringence and absorption losses of hydrogen-bonded LC was estimated at 2.5 THz. Our results indicate that introduction of alkoxy chain to hydrogen-bonded LC is effective to increase birefringence in terahertz region. These results indicate that hydrogen-bonded LCs are a strong candidate for future terahertz devices because of their excellent properties in the terahertz region.

  • Characterization of Nonlinear Optical Chromophores Having Tricyanopyrroline Acceptor Unit and Amino Benzene Donor Unit with or without a Benzyloxy Group

    Toshiki YAMADA  Yoshihiro TAKAGI  Chiyumi YAMADA  Akira OTOMO  

     
    BRIEF PAPER

      Pubricized:
    2020/09/18
      Vol:
    E104-C No:6
      Page(s):
    184-187

    The optical properties of new tricyanopyrroline (TCP)-based chromophores with a benzyloxy group bound to aminobenzene donor unit were characterized by hyper-Rayleigh scattering (HRS), absorption spectrum, and 1H-NMR measurements, and the influence of the benzyloxy group on TCP-based chromophores was discussed based on the data. A positive effect of NLO properties was found in TCP-based NLO chromophores with a benzyloxy group compared with benchmark NLO chromophores without the benzyloxy group, suggesting an influence of intra-molecular hydrogen bond. Furthermore, we propose a formation of double intra-molecular hydrogen bonds in the TCP chromophore with monoene as the π-conjugation bridge and aminobenzene with a benzyloxy group as the donor unit.

  • Properties of SiO2 Surface and Pentacene OTFT Subjected to Atomic Hydrogen Annealing

    Akira HEYA  Naoto MATSUO  

     
    BRIEF PAPER

      Vol:
    E93-C No:10
      Page(s):
    1516-1517

    Effects of atomic hydrogen annealing (AHA) on the film properties and the electrical characteristics of pentacene organic thin-film transistors (OTFTs) are investigated. The surface energy of SiO2 surface and grain size of pentacene film were decreased with increasing AHA treatment time. For the treatment time of 300 s, pentacene film showed the (00l) and (011') orientation and high carrier mobility in spite of small crystal grain.

  • Formation of Pd Nanodots Induced by Remote Hydrogen Plasma and Its Application to Floating Gate MOS Memories

    Kazuhiro SHIMANOE  Katsunori MAKIHARA  Mitsuhisa IKEDA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    616-619

    We have studied the formation of Pd-nanodots on SiO2 from ultrathin Pd films being exposed to remote hydrogen plasma at room temperature, in which parameters such as the gas pressure and input power to generate H2 plasma and the Pd film thickness were selected to get some insights into surface migration of Pd atoms induced with atomic hydrogen irradiation and resultant agglomeration with cohesive action. The areal dot density was controlled in the range from 3.4 to 6.51011 cm - 2 while the dot size distribution was changed from 7 to 1.5 in average dot height with 40% variation in full-width at half maximum. We also fabricated MOS capacitors with a Pd-nanodots floating gate and confirmed the flat-band voltage shift in capacitance-voltage characteristic due to electron injection to and emission from the dots floating gate.

  • Residue-Free Solder Bumping Using Small AuSn Particles by Hydrogen Radicals

    Eiji HIGURASHI  Daisuke CHINO  Tadatomo SUGA  

     
    PAPER

      Vol:
    E92-C No:2
      Page(s):
    247-251

    An AuSn reflow process using hydrogen radicals as a way to avert the cleaning of flux residues was investigated for its application to solder bumping. AuSn particles (manufactured by a gas atomizer) smaller than 5 µm, which are difficult to reflow by conventional methods that use rosin mildly activated (RMA) flux, were used for the experiments. In this process, the reduction effect by the hydrogen radicals removes the surface oxides of the AuSn particles. Excellent wetting between 1-µm-diameter AuSn particles and Ni metallization occurred in hydrogen plasma. Using hydrogen radicals, 100 µm-diameter AuSn bumps without voids were successfully formed at a peak temperature of 300. The average bump shear strength was approximately 73 gf/bump. Bump inspection after shear testing showed that a fracture had occurred between the Au/Ni/Cr under bump metallurgy (UBM) and Si substrate, suggesting sufficient wetting between the AuSn bump and the UBM.

  • RF Equivalent-Circuit Analysis of p-Type Diamond Field-Effect Transistors with Hydrogen Surface Termination

    Makoto KASU  Kenji UEDA  Hiroyuki KAGESHIMA  Yoshiharu YAMAUCHI  

     
    PAPER-Wide Bandgap Devices

      Vol:
    E91-C No:7
      Page(s):
    1042-1049

    On the basis of the RF characteristics of p-type diamond field-effect transistors (FETs) with hydrogen surface termination, we establish an equivalent circuit (EQC) model. From comparisons of three cases we reveal that to represent the device performance in the EQC, the source, gate, and drain resistance should be considered but that the gate-source and gate-drain resistance can be ignored. The features of diamond FETs are (1) a plateau of the gate capacitance in a certain gate voltage range. (2) maximum fT and fMAX cut-off frequencies near the threshold gate voltage, and (3) a high fMAX/fT ratio 3.8. We discuss these features in terms of the energy barrier between the gate metal and the two-dimensional hole channel and drift region below the gate.

  • Enhanced Characteristics of In0.5Ga0.5As Quantum Dot Infrared Photo Detector with Hydrogen Plasma Treatment

    Sung Ho HWANG  Jin Dong SONG  Won Jun CHOI  Jung Il LEE  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    699-702

    Device characteristics of In0.5Ga0.5As/GaAs quantum dot infrared detector (QDIP) have been enhanced with hydrogen plasma treatment. After the hydrogen (H) plasma treatment, the dark currents were noticeably decreased and photoluminescence (PL) intensity was increased by H-passivation of interfacial traps between quantum dots and GaAs and of non-radiative defect centers caused during QD growths. Photo response, which could not be observed in as-grown QDIP due to large dark currents which obscured the photocurrent signal, was measured successfully after H-treatment due to H-passivation.

  • Role of Hydrogen in Polycrystallne Si by Excimer Laser Annealing

    Naoya KAWAMOTO  Naoto MATSUO  Atsushi MASUDA  Yoshitaka KITAMON  Hideki MATSUMURA  Yasunori HARADA  Tadaki MIYOSHI  Hiroki HAMADA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E88-C No:2
      Page(s):
    241-246

    The role of hydrogen in the Si film during excimer laser annealing (ELA) has been successfully studied by using a novel sample structure, which is stacked by a-Si film and SiN film. Hydrogen contents in the Si films during ELA are changed by preparing samples with hydrogen content of 2.3-8.2 at.% in the SiN films with a use of catalytic (Cat)-CVD method. For the low concentration of hydrogens in the Si film, the grain size increases by decreasing hydrogen concentration in the Si film, and the internal stress of the film decreases as increasing the shot number. For the high concentration of hydrogens in the Si film, hydrogen burst was observed at 500 mJ/cm2 and the dependence of the internal stress on the shot number becomes weak even at 318 mJ/cm2. These phenomena can be understood basically using the secondary grain growth mechanism, which we have proposed.

  • RF Performance of Diamond Surface-Channel Field-Effect Transistors

    Hitoshi UMEZAWA  Shingo MIYAMOTO  Hiroki MATSUDAIRA  Hiroaki ISHIZAKA  Kwang-Soup SONG  Minoru TACHIKI  Hiroshi KAWARADA  

     
    INVITED PAPER

      Vol:
    E86-C No:10
      Page(s):
    1949-1954

    RF diamond FETs have been realized on a hydrogen-terminated diamond surface conductive layer. By utilizing the self-aligned gate fabrication process which is effective for the reduction of the parasitic resistance, the transconductance of diamond FETs has been greatly improved. Consequently, the high frequency operation of 22 GHz has been realized in 0.2 µ m gate diamond MISFETs with a CaF2 gate insulator. This value is the highest in diamond FETs and is comparable to the maximum value of SiC MESFETs at present.

  • Hydrogen Degradation of InP HEMTs and GaAs PHEMTs

    Jesus A. del ALAMO  Roxann R. BLANCHARD  Samuel D. MERTENS  

     
    INVITED PAPER-Hetero-FETs & Their Integrated Circuits

      Vol:
    E84-C No:10
      Page(s):
    1289-1293

    We have carried out a systematic study of the impact of hydrogen exposure on InP HEMTs and GaAs PHEMTs with Ti/Pt/Au gates. Hydrogen poisoning is an important reliability concern in these devices. Our work has provided ample evidence supporting the formation of TiH inside the gate structure upon exposure of HEMTs to a hydrogen environment. The resulting volume expansion of the gate stresses the semiconductor heterostructure underneath and, through the piezoelectric effect, results in a shift of the threshold voltage of the device. This mechanism is largely reversible. Independently of this, we have found that H2 upsets the stoichiometry of the exposed InAlAs barrier in the recessed region right next to the gate. This irreversebly changes the extrinsic sheet carrier concentration in the channel and affects other figures of merit such as the breakdown voltage. This understanding should be instrumental in identifying device-level solutions to this problem.

  • Current-Writing Active-Matrix Circuit for Organic Light-Emitting Diode Display Using a-Si:H Thin-Film-Transistors

    Reiji HATTORI  Tsutomu TSUKAMIZU  Ryusuke TSUCHIYA  Kazunori MIYAKE  Yi HE  Jerzy KANICKI  

     
    LETTER-Electronic Displays

      Vol:
    E83-C No:5
      Page(s):
    779-782

    In this letter, we describe a four thin-film-transistor (TFT) pixel circuit based on hydrogenated amorphous silicon (a-Si:H) technology for the active-matrix organic light-emitting diode (AMOLED) display applications. The circuit uses current-writing mechanism and can automatically adjust the threshold-voltage shifts of both the organic light-emitting diodes (OLEDs) and the TFTs induced by the circuit aging or process variations. Experimental results indicate virtually no variation of the output driving current after long-term bias-temperature-stress (BTS).

  • ECR-MBE Growth of GaN Using Hydrogen-Nitrogen Mixed Gas Plasma

    Yasuo CHIBA  Tsutomu ARAKI  Yasushi NANISHI  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    627-632

    Electron-cyclotron-resonance plasma-excited molecular beam epitaxial (ECR-MBE) growth of GaN using hydrogen-nitrogen mixed gas plasma was investigated. The growth rate of GaN was drastically increased by addition of hydrogen to nitrogen plasma. The transition of reflection high energy electron diffraction (RHEED) patterns, from streaked patterns created without the presence of hydrogen to spotted patterns in the presence of hydrogen, indicated that the effective V/III ratio was increased by the addition of hydrogen. NHx radical families were detected in hydrogen-nitrogen mixed gas plasma by quadrupole mass spectroscopy and optical emission spectroscopy. These radicals were considered to be responsible for the observed increase in growth rate. Transmission electron microscope observation showed that the surface morphology of GaN without hydrogen was relatively flat and that with hydrogen was columnar with {1 0 ~1 1} facets. It seems likely that the columnar structure of the GaN layers grown with hydrogen were strongly related to initial island growth.

  • Improved Resistance Against the Reductive Ambient Annealing of Ferroelectric Pb(Zr, Ti)O3 Thin Film Capacitors with IrO2 Top Electrode

    Yoshihisa FUJISAKI  Keiko KUSHIDA-ABDELGHAFAR  Hiroshi MIKI  Yasuhiro SHIMAMOTO  

     
    PAPER

      Vol:
    E81-C No:4
      Page(s):
    518-522

    Degradation of ferroelectricity in PZT (Pb(Zr0. 52, Ti0. 48)O3) thin-film capacitors caused by heat treatment in a reductive ambience is investigated. We have found that the degradation of ferroelectricity depends upon the metal used for the top electrode of the PZT capacitor. The increased degradation in the case of a PZT capacitor with Pt electrodes can be explained by a catalytic reaction on the Pt surface. With the use of an IrO2 non-catalytic top electrode, we have made the ferroelectricity of an IrO2/PZT/Pt capacitor retained even after the H2 annealing at 400, or above.

  • Current Progress in Epitaxial Layer Transfer (ELTRAN(R))

    Kiyofumi SAKAGUCHI  Nobuhiko SATO  Kenji YAMAGATA  Tadashi ATOJI  Yasutomo FUJIYAMA  Jun NAKAYAMA  Takao YONEHARA  

     
    INVITED PAPER-Wafer Technologies

      Vol:
    E80-C No:3
      Page(s):
    378-387

    The quality of ELTRAN wafers has been improved by pre-injection in epitaxial growth, surface treatment just before bonding, high temperature annealing at bonding, high selective etching and hydrogen annealing. The pre-injection reduces defects. The surface treatment eliminates edge-voids. The high temperature bonding dramatically reduces voids all over the wafer. Hydrogen annealing is very effective for surface flattening and boron out-diffusion. In particular, the edge-void elimination by the surface treatment just before bonding is greatly effective for enlarging the SOI area and reduces the edge exclusion down to only two mm. The gate oxide integrity is well evaluated. This process promises high yield and through-put, because each of the steps can be independently optimized.

  • Characteristics of a-Si Thin-Film Transistors with an Inorganic Black Matrix on the Top

    Yoshimine KATO  Yuki MIYOSHI  Masakazu ATSUMI  Yoshimasa KAIDA  Steven L. WRIGHT  Lauren F. PALMATEER  

     
    PAPER

      Vol:
    E79-C No:8
      Page(s):
    1091-1096

    The characteristics of a-Si bottom-gate TFT test devices with several kinds of inorganic "quasi-black matrix," such as metal, semiconductor, and insulator, on the top were investigated for various black matrix(BM) resistivities. In the Ia-Vg characteristics, for a BM sheet resistance of about1 1012 Ω/, a high off current and large Vth shift were observed due to the back-gating effects when the BM is charged up. Accrding to the ac dynamic characteristics, there was almost no leakage due to the capacitive coupling between source and drain after 16.6 msec(one frame) when the BM sheet resistance was above 7 1013 Ω/ . It was found that hydrogenated amorphous silicon germanium(a-SiGe:H) film, which has enough optical density, with the sheet resistance above the order of 1014 Ω/ is a promising candidate for an inorganic BM on TFT array.

  • Sequential Dry Cleaning System for Highly-Controlled Silicon Surfaces

    Takashi ITO  

     
    PAPER-High-Performance Processing

      Vol:
    E79-C No:3
      Page(s):
    375-381

    High-performance ULSI devices require ultraclean silicon surfaces, the complete removal of native oxides, and atomic level flatness and stabilization of the cleaned surfaces against molecular contaminants. Dry cleaning techniques are an attractive alternative to conventional wet processing for future ULSI production using cluster chambers or multi-process cham-bers. Organic contaminants, including photoresist polymers, are effectively removed by photo-excited ozone cleaning. We have found photo-excited halogen radicals to be useful for removing trace metals and native oxides from silicon surfaces without damaging on silicon and silicon-dioxide surfaces. We success-fully terminated hydrogen on (100) silicon surfaces by annealing in pure hydrogen ambient. A dry cleaning system with these sequential processes will be useful in constructing fully-integrated mass-production lines of high-performance ULSI devices.

  • Hot Carrier Evaluation of TFT by Emission Microscopy

    Junko KOMORI  Jun-ichi MITSUHASHI  Shigenobu MAEDA  

     
    PAPER-Device Technology

      Vol:
    E77-C No:3
      Page(s):
    367-372

    A new evaluation technique of hot carrier degradation is proposed and applied to practical evaluation of p-channel polycrystalline silicon thin film transistors (TFT). The proposed technique introduces emission microscopy which is particularly effective for evaluating TFT devices. We have developed an automatic measurement system in which measurement of the electrical characteristics and monitoring the photo emission are done simultaneously. Using this system, we have identified the dominant mechanism of hot carrier degradation in TFTs, and evaluated the effect of plasma hydrogenation on hot carrier degradation.

  • Native Oxide Growth on Hydrogen-Terminated Silicon Surfaces

    Tatsuhiro YASAKA  Masaru TAKAKURA  Kenichi SAWARA  Shigeo UENAGA  Hiroshi YASUTAKE  Seiichi MIYAZAKI  Masataka HIROSE  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    764-769

    Hydrogen termination of HF-treated Si surfaces and the oxidation kinetics have been studied by x-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR) Attenuated Total Reflection (ATR). The oxidation of hydrogen-terminated Si in air or in pure water proceeds parallel to the surface presumably from step edges, resulting in the layer-by-layer oxidation. The oxide gryowth rate on an Si(100) surface is faster than (110) and (111) when the wafer is stored in pure water. This is interpreted in terms of the steric hindrance against molecular oxygen penetration throughth the (110) and (111) surfaces where the atom void size is equal to or smaller than O2 molecule. The oxide growth rate in pure water for heavily doped n-type Si is significantly high compared to that of heavily doped p-type Si. This is explained by the conduction electron tunneling from Si to absorbed O2 molecule to form the O2- state. O2- ions easily decompose and induce the surface electric field, enhancing the oxidation rate. It is found that the oxidation of heavily doped n-type Si in pure water is effectively suppressed by adding a small amount (1003600 ppm) of HCl.

1-20hit(22hit)