The search functionality is under construction.

Keyword Search Result

[Keyword] shift(347hit)

81-100hit(347hit)

  • On the Minimum-Weight Codewords of Array LDPC Codes with Column Weight 4

    Haiyang LIU  Gang DENG  Jie CHEN  

     
    PAPER-Coding Theory

      Vol:
    E97-A No:11
      Page(s):
    2236-2246

    In this paper, we investigate the minimum-weight codewords of array LDPC codes C(m,q), where q is an odd prime and m ≤ q. Using some analytical approaches, the lower bound on the number of minimum-weight codewords of C(m,q) given by Kaji (IEEE Int. Symp. Inf. Theory, June/July 2009) is proven to be tight for m = 4 and q > 19. In other words, C(4,q) has 4q2(q-1) minimum-weight codewords for all q > 19. In addition, we show some interesting universal properties of the supports of generators of minimum-weight codewords of the code C(4,q)(q > 19).

  • MSK Modulation for Physical-Layer Network Coding Systems

    Nan SHA  Yuanyuan GAO  Xiaoxin YI  Wei JIAN  Weiwei YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:10
      Page(s):
    2086-2089

    In this letter, we combine minimum-shift keying (MSK) with physical-layer network coding (PNC) to form a new scheme, i.e., MSK-PNC, for two-way relay channels (TWRCs). The signal detection of the MSK-PNC scheme is investigated, and two detection methods are proposed. The first one is orthogonal demodulation and mapping (ODM), and the second one is two-state differential detection (TSDD). The error performance of the proposed MSK-PNC scheme is evaluated through simulations.

  • Experiments Validating the Effectiveness of Multi-Point Wireless Energy Transmission with Carrier Shift Diversity Open Access

    Daiki MAEHARA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  Minoru FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1928-1937

    This paper presents a method to seamlessly extend the coverage of energy supply field for wireless sensor networks in order to free sensors from wires and batteries, where the multi-point scheme is employed to overcome path-loss attenuation, while the carrier shift diversity is introduced to mitigate the effect of interference between multiple wave sources. As we focus on the energy transmission part, sensor or communication schemes are out of scope of this paper. To verify the effectiveness of the proposed wireless energy transmission, this paper conducts indoor experiments in which we compare the power distribution and the coverage performance of different energy transmission schemes including conventional single-point, simple multi-point and our proposed multi-point scheme. To easily observe the effect of the standing-wave caused by multipath and interference between multiple wave sources, 3D measurements are performed in an empty room. The results of our experiments together with those of a simulation that assumes a similar antenna setting in free space environment show that the coverage of single-point and multi-point wireless energy transmission without carrier shift diversity are limited by path-loss, standing-wave created by multipath and interference between multiple wave sources. On the other hand, the proposed scheme can overcome power attenuation due to the path-loss as well as the effect of standing-wave created by multipath and interference between multiple wave sources.

  • All-Optical Wavelength-Shift-Free NRZ-DPSK to RZ-DPSK Format Conversion with Pulsewidth Tunability by an SOA-Based Switch

    Gazi Mohammad SHARIF  Quang NGUYEN-THE  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    755-761

    We demonstrate an all-optical non-return-to-zero differential phase shift keying (NRZ-DPSK) to return-to-zero differential phase shift keying (RZ-DPSK) format conversion with wavelength-shift-free and pulsewidth tunable operations by using a semiconductor optical amplifier (SOA)-based switch. An NRZ-DPSK signal is injected into the SOA-based switch with an RZ clock, and is converted to RZ-DPSK signal owing to the nonlinear effects inside the SOA. In this scheme, the wavelength of the converted RZ-DPSK signal is maintained as the original wavelength of the input NRZ-DPSK signal during the format conversion. Moreover, the pulsewidth of the converted signal is tunable in a wider operating range from 30 to 60 ps. The format conversion with pulsewidth tunability is based on cross-phase modulation (XPM) and cross-gain modulation (XGM) effects in the SOA. The clear eye diagrams, optical spectra and the bit-error-rate (BER) characteristics show high conversion performance with the wide pulsewidth tuning range. For all cases of the converted RZ-DPSK signal with different pulsewidths, the receiver sensitivities at a BER of 10$^{-9}$ for the converted RZ-DPSK signal were 0.7 to 1.5 dB higher than the receiver sensitivity of the input NRZ-DPSK signal.

  • Parallel Use of Dispersion Devices for Resolution Improvement of Optical Quantization at High Sampling Rate

    Tomotaka NAGASHIMA  Takema SATOH  Petre CATALIN  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    787-794

    We investigate resolution improvement in optical quantization with keeping high sampling rate performance in optical sampling. Since our optical quantization approach uses power-to-wavelength conversion based on soliton self-frequency shift, a spectral compression can improve resolution in exchange for sampling rate degradation. In this work, we propose a different approach for resolution improvement by parallel use of dispersion devices so as to avoid sampling rate degradation. Additional use of different dispersion devices can assist the wavelength separation ability of an original dispersion device. We demonstrate the principle of resolution improvement in 3 bit optical quantization. Simulation results based on experimental evaluation of 3 bit optical quantization system shows 4 bit optical quantization is achieved by parallel use of dispersion devices in 3 bit optical quantization system. The maximum differential non-linearity (DNL) and integral non-linearity (INL) are 0.49 least significant bit (LSB) and 0.50 LSB, respectively. The effective number of bits (ENOB) estimated to 3.62 bit.

  • A New Simple Packet Combining Scheme Employing Maximum Likelihood Detection for MIMO-OFDM Transmission in Relay Channels

    Takeshi ONIZAWA  Hiroki SHIBAYAMA  Masashi IWABUCHI  Akira KISHIDA  Makoto UMEUCHI  Tetsu SAKATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:5
      Page(s):
    1094-1102

    This paper describes a simple packet combining scheme with maximum likelihood detection (MLD) for multiple-input multiple-output with orthogonal frequency division multiplexing (MIMO-OFDM) in relay channels to construct reliable wireless links in wireless local area networks (LANs). Our MLD-based approach employs the multiplexed sub-stream signals in different transmit slots. The proposed scheme uses an additional combining process before MLD processing. Moreover, the proposed scheme sets the cyclic shift delay (CSD) operation in the relay terminal. We evaluate the performance of the proposed scheme by the packet error rate (PER) and throughput performance in the decode-and-forward (DF) strategy. First, we show that the proposed scheme offers approximately 4.5dB improvement over the conventional scheme in the received power ratio of the relay terminal to the destination terminal at PER =0.1. Second, the proposed scheme achieves about 1.6 times the throughput of the conventional scheme when the received power ratio of the relay terminal to the destination terminal is 3dB.

  • Joint CPFSK Modulation and Physical-Layer Network Coding in Two-Way Relay Channels

    Nan SHA  Yuanyuan GAO  Xiaoxin YI  Wenlong LI  Weiwei YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:4
      Page(s):
    1021-1023

    A joint continuous phase frequency shift keying (CPFSK) modulation and physical-layer network coding (PNC), i.e., CPFSK-PNC, is proposed for two-way relay channels (TWRCs). This letter discusses the signal detection of the CPFSK-PNC scheme with emphasis on the maximum-likelihood sequence detection (MLSD) algorithm for the relay receiver. The end-to-end error performance of the proposed CPFSK-PNC scheme is evaluated through simulations.

  • An Efficient Beamforming Algorithm for Large-Scale Phased Arrays with Lossy Digital Phase Shifters

    Shunji TANAKA  Tomohiko MITANI  Yoshio EBIHARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:4
      Page(s):
    783-790

    An efficient beamforming algorithm for large-scale phased arrays with lossy digital phase shifters is presented. This problem, which arises in microwave power transmission from solar power satellites, is to maximize the array gain in a desired direction with the gain loss of the phase shifters taken into account. In this paper the problem is first formulated as a discrete optimization problem, which is then decomposed into element-wise subproblems by the real rotation theorem. Based on this approach, a polynomial-time algorithm to solve the problem numerically is constructed and its effectiveness is verified by numerical simulations.

  • Nb 9-Layer Fabrication Process for Superconducting Large-Scale SFQ Circuits and Its Process Evaluation Open Access

    Shuichi NAGASAWA  Kenji HINODE  Tetsuro SATOH  Mutsuo HIDAKA  Hiroyuki AKAIKE  Akira FUJIMAKI  Nobuyuki YOSHIKAWA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    132-140

    We describe the recent progress on a Nb nine-layer fabrication process for large-scale single flux quantum (SFQ) circuits. A device fabricated in this process is composed of an active layer including Josephson junctions (JJ) at the top, passive transmission line (PTL) layers in the middle, and a DC power layer at the bottom. We describe the process conditions and the fabrication equipment. We use both diagnostic chips and shift register (SR) chips to improve the fabrication process. The diagnostic chip was designed to evaluate the characteristics of basic elements such as junctions, contacts, resisters, and wiring, in addition to their defect evaluations. The SR chip was designed to evaluate defects depending on the size of the SFQ circuits. The results of a long-term evaluation of the diagnostic and SR chips showed that there was fairly good correlation between the defects of the diagnostic chips and yields of the SRs. We could obtain a yield of 100% for SRs including 70,000JJs. These results show that considerable progress has been made in reducing the number of defects and improving reliability.

  • FPGA Implementation of Exclusive Block Matching for Robust Moving Object Extraction and Tracking

    Yoichi TOMIOKA  Ryota TAKASU  Takashi AOKI  Eiichi HOSOYA  Hitoshi KITAZAWA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:3
      Page(s):
    573-582

    Hardware acceleration is an essential technique for extracting and tracking moving objects in real time. It is desirable to design tracking algorithms such that they are applicable for parallel computations on hardware. Exclusive block matching methods are designed for hardware implementation, and they can realize detailed motion extraction as well as robust moving object tracking. In this study, we develop tracking hardware based on an exclusive block matching method on FPGA. This tracking hardware is based on a two-dimensional systolic array architecture, and can realize robust moving object extraction and tracking at more than 100 fps for QVGA images using the high parallelism of an exclusive block matching method, synchronous shift data transfer, and special circuits to accelerate searching the exclusive correspondence of blocks.

  • Analog Decoding Method for Simplified Short-Range MIMO Transmission

    Ryochi KATAOKA  Kentaro NISHIMORI  Takefumi HIRAGURI  Naoki HONMA  Tomohiro SEKI  Ken HIRAGA  Hideo MAKINO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:3
      Page(s):
    620-630

    A novel analog decoding method using only 90-degree phase shifters is proposed to simplify the decoding method for short-range multiple-input multiple-output (MIMO) transmission. In a short-range MIMO transmission, an optimal element spacing that maximizes the channel capacity exists for a given transmit distance between the transmitter and receiver. We focus on the fact that the weight matrix by zero forcing (ZF) at the optimal element spacing can be obtained by using dividers and 90-degree phase shifters because it can be expressed by a unitary matrix. The channel capacity by the proposed method is next derived for the evaluation of the exact limitation of the channel capacity. Moreover, it is shown that an optimal weight when using directional antennas can be expressed by using only dividers, 90-degree phase shifters, and attenuators, regardless of the beam width of the directional antenna. Finally, bit error rate and channel capacity evaluations by both simulation and measurement confirm the effectiveness of the proposed method.

  • Pattern Reconstruction for Deviated AUT in Spherical Measurement by Using Spherical Waves

    Yang MIAO  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:1
      Page(s):
    105-113

    To characterize an antenna, the acquisition of its three-dimensional radiation pattern is the fundamental requirement. Spherical antenna measurement is a practical approach to measuring antenna patterns in spherical geometry. However, due to the limitations of measurement range and measurement time, the measured samples may either be incomplete on scanning sphere, or be inadequate in terms of the sampling interval. Therefore there is a need to extrapolate and interpolate the measured samples. Spherical wave expansion, whose band-limited property is derived from the sampling theorem, provides a good tool for reconstructing antenna patterns. This research identifies the limitation of the conventional algorithm when reconstructing the pattern of an antenna which is not located at the coordinate origin of the measurement set-up. A novel algorithm is proposed to overcome the limitation by resampling between the unprimed and primed (where the antenna is centred) coordinate systems. The resampling of measured samples from the unprimed coordinate to the primed coordinate can be conducted by translational phase shift, and the resampling of reconstructed pattern from the primed coordinate back to the unprimed coordinate can be accomplished by rotation and translation of spherical waves. The proposed algorithm enables the analytical and continuous pattern reconstruction, even under the severe sampling condition for deviated AUT. Numerical investigations are conducted to validate the proposed algorithm.

  • N-Shift Zero Correlation Zone Sequence

    Chao ZHANG  Keke PANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E97-A No:1
      Page(s):
    432-435

    N-Shift Zero Correlation Zone (NS-ZCZ) sequence is defined with the N-shift zero correlation zone in the correlation function. Namely, the N-shift zero only appears within the correlation zone symmetrically distributed in the center of the correlation function. Moreover, the traditional ZCZ sequences can be considered as the N-shift ZCZ sequence with N=1. Similar to ZCZ sequence, NS-ZCZ sequences can be applied in sequence design for co-channel interference mitigation with more sequences in the sequence set compared with the traditional N-shift sequences. In this letter, the definition and construction algorithms are proposed. The corresponding theoretical bounds are analyzed.

  • Doppler Shift Based Target Localization Using Semidefinite Relaxation

    Yan Shen DU  Ping WEI  Wan Chun LI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:1
      Page(s):
    397-400

    We propose a novel approach to the target localization problem using Doppler frequency shift measurements. We first reformulate the maximum likelihood estimation (MLE) as a constrained weighted least squares (CWLS) estimation, and then perform the semidefinite relaxation to relax the CWLS problem as a convex semidefinite programming (SDP) problem, which can be efficiently solved using modern convex optimization methods. Finally, the SDP solution can be used to initialize the original MLE which can provide estimates achieve the Cramer-Rao lower bound accuracy. Simulations corroborate the good performance of the proposed method.

  • A New Necessary Condition for Feedback Functions of de Bruijn Sequences

    Zhongxiao WANG  Wenfeng QI  Huajin CHEN  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    152-156

    Recently nonlinear feedback shift registers (NFSRs) have frequently been used as basic building blocks for stream ciphers. A major problem concerning NFSRs is to construct NFSRs which generate de Bruijn sequences, namely maximum period sequences. In this paper, we present a new necessary condition for NFSRs to generate de Bruijn sequences. The new condition can not be deduced from the previously proposed necessary conditions. It is shown that the number of NFSRs whose feedback functions satisfy all the previous necessary conditions but not the new one is very large.

  • Invariance and Periodic Oversampling in Principal Shift-Invariant Spaces

    Kil Hyun KWON  Dae Gwan LEE  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:1
      Page(s):
    313-321

    We first find simple characterizations of $ rac{1}{N} mathbb{Z}$-invariance of arbitrary principal shift-invariant space $V(phi)$. Then we find several equivalent conditions for $V(phi)$ to admit periodic oversampling for a class of continuous frame generators $phi$. In particular, when $phi$ is band-limited and $hat{phi}$ is piecewise continuous, we find very simple and general sufficient conditions for $V(phi)$ to admit periodic oversampling, which involve the extra invariance of $V(phi)$, together with an illustrating example.

  • On the Irreducibility of Certain Shifts of Finite Type

    Tetsuya KOBAYASHI  Akiko MANADA  Takahiro OTA  Hiroyoshi MORITA  

     
    PAPER-Sequence

      Vol:
    E96-A No:12
      Page(s):
    2415-2421

    A shift of finite type (SFT) is a set of all bi-infinite sequences over some alphabet which is characterized by a finite set of forbidden words. It is a typical example of sofic shifts and has been used in media storage area, such as CD's or DVD's. The study of sofic shifts is based on graph theory, and the irreducibility of shifts is an important property to be considered for the study. In this paper, we will provide some sufficient conditions for an SFT to be irreducible from the perspective of the antidictionary of a word and the number of forbidden words. We also present a necessary and sufficient condition for an SFT to be irreducible when the number of forbidden words is one less than the alphabet size.

  • Multi-Dimensional Shift Multiplexing Technique with Spherical Reference Waves

    Shuhei YOSHIDA  Takaaki MATSUBARA  Hiroyuki KURATA  Shuma HORIUCHI  Manabu YAMAMOTO  

     
    PAPER

      Vol:
    E96-C No:12
      Page(s):
    1520-1524

    Holographic data storage (HDS) is a next-generation optical storage that uses the principles of holography. The multiplex holographic recording method is an important factor that affects the recording capacity of this storage. Various multiplex recording methods have been proposed so far. In this study, we focus on shift multiplexing with spherical waves and propose a method of shift multiplex recording that combines the in-plane direction and thickness direction of the recording medium. In conventional shift multiplexing with spherical waves, shift multiplexing is usually carried out with respect to the direction parallel to the plane of the recording medium. By focusing on the fact that shift selectivity is also in the thickness direction, we examined the possibility of a multiplex recording method that combines multiple shift directions. Simulation and experimental verification shows that the proposed method is effective in principle.

  • Compatible Color Adjustment for Preserving Chromatic Adapted Color in HDR Image Rendering

    Seok-Min CHAE  Sung-Hak LEE  Kyu-Ik SOHNG  

     
    BRIEF PAPER

      Vol:
    E96-C No:11
      Page(s):
    1408-1412

    The iCAM06 has been used as an image appearance model for HDR image rendering. iCAM06 goes through the color space conversions of the several steps to present HDR images. The dynamic range of a HDR image needs to be mapped onto the range of output devices, which is called the tone mapping. However, tone compression process of iCAM06 causes white point shift and color distortion because of color-clipping and cross-stimulus. Therefore, we proposed a modified white-balanced method in low-chromatic region and a color adjustment method in IPT space to compensate the color distortion during in tone compression process. Through the experimental results, we confirmed the proposed compatible color adjustment method had better performance than iCAM06 and enhanced models.

  • A Calibrationless Si-CMOS 5-bit Baseband Phase Shifter Using a Fixed-Gain-Amplifier Matrix

    Tuan Thanh TA  Shoichi TANIFUJI  Suguru KAMEDA  Noriharu SUEMATSU  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:10
      Page(s):
    1322-1329

    In this paper, we propose a novel baseband (BB) phase shifter (PS) using a fixed-gain-amplifier (FGA) matrix. The proposed BB PS consists of 5 stages of a vector synthesis type FGA matrix with in-phase/quadrature-phase (I/Q) input/output interfaces. In order to achieve low gain variation between phase shift states, 3rd to 5th stages are designed to have a phase shift of +φi and -φi (i=3,4,5). To change between +φi and -φi phase shift states, two FGAs with DC bias in-phase/out-phase switches are used. The two FGAs have the same gain, therefore ideally no gain variation can be achieved. Using this configuration, phase shift error and gain variation caused by process mismatch and temperature variation can be reduced. Fabricated 5-bit BB PS has 3-dB bandwidth of 1.05GHz, root-mean-square (rms) phase errors lower than 2.2°, rms gain variations lower than 0.42dB. Power consumption of the PS core and output buffer are 4.9mW and 14.3mW, respectively. 1-dB compression output power is -12.5dBm. The fabricated PS shows that the total phase shift error and gain variation are within the required accuracy of a 5-bit PS with no requirement of calibration.

81-100hit(347hit)