The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] symmetric(201hit)

1-20hit(201hit)

  • Unsupervised Intrusion Detection Based on Asymmetric Auto-Encoder Feature Extraction Open Access

    Chunbo LIU  Liyin WANG  Zhikai ZHANG  Chunmiao XIANG  Zhaojun GU  Zhi WANG  Shuang WANG  

     
    PAPER-Information Network

      Pubricized:
    2024/04/25
      Vol:
    E107-D No:9
      Page(s):
    1161-1173

    Aiming at the problem that large-scale traffic data lack labels and take too long for feature extraction in network intrusion detection, an unsupervised intrusion detection method ACOPOD based on Adam asymmetric autoencoder and COPOD (Copula-Based Outlier Detection) algorithm is proposed. This method uses the Adam asymmetric autoencoder with a reduced structure to extract features from the network data and reduce the data dimension. Then, based on the Copula function, the joint probability distribution of all features is represented by the edge probability of each feature, and then the outliers are detected. Experiments on the published NSL-KDD dataset with six other traditional unsupervised anomaly detection methods show that ACOPOD achieves higher precision and has obvious advantages in running speed. Experiments on the real civil aviation air traffic management network dataset further prove that the method can effectively detect intrusion behavior in the real network environment, and the results are interpretable and helpful for attack source tracing.

  • Functional Decomposition of Symmetric Multiple-Valued Functions and Their Compact Representation in Decision Diagrams Open Access

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:8
      Page(s):
    922-929

    This paper proposes a decomposition method for symmetric multiple-valued functions. It decomposes a given symmetric multiple-valued function into three parts. By using suitable decision diagrams for the three parts, we can represent symmetric multiple-valued functions compactly. By deriving theorems on sizes of the decision diagrams, this paper shows that space complexity of the proposed representation is low. This paper also presents algorithms to construct the decision diagrams for symmetric multiple-valued functions with low time complexity. Experimental results show that the proposed method represents randomly generated symmetric multiple-valued functions more compactly than the conventional representation method using standard multiple-valued decision diagrams. Symmetric multiple-valued functions are a basic class of functions, and thus, their compact representation benefits many applications where they appear.

  • Constructions of 2-Correlation Immune Rotation Symmetric Boolean Functions Open Access

    Jiao DU  Ziwei ZHAO  Shaojing FU  Longjiang QU  Chao LI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/03/22
      Vol:
    E107-A No:8
      Page(s):
    1241-1246

    In this paper, we first recall the concept of 2-tuples distribution matrix, and further study its properties. Based on these properties, we find four special classes of 2-tuples distribution matrices. Then, we provide a new sufficient and necessary condition for n-variable rotation symmetric Boolean functions to be 2-correlation immune. Finally, we give a new method for constructing such functions when n=4t - 1 is prime, and we show an illustrative example.

  • Optical Mode Multiplexer Using LiNbO3 Asymmetric Directional Coupler Enabling Voltage Control for Phase-Matching Condition Open Access

    Shotaro YASUMORI  Seiya MORIKAWA  Takanori SATO  Tadashi KAWAI  Akira ENOKIHARA  Shinya NAKAJIMA  Kouichi AKAHANE  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2023/11/29
      Vol:
    E107-C No:5
      Page(s):
    146-149

    An optical mode multiplexer was newly designed and fabricated using LiNbO3 waveguides. The multiplexer consists of an asymmetric directional coupler capable of achieving the phase-matching condition by the voltage adjustment. The mode conversion efficiency between TM0 and TM1 modes was quantitatively measured to be 0.86 at maximum.

  • Persymmetric Structured Covariance Matrix Estimation Based on Whitening for Airborne STAP

    Quanxin MA  Xiaolin DU  Jianbo LI  Yang JING  Yuqing CHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/12/27
      Vol:
    E106-A No:7
      Page(s):
    1002-1006

    The estimation problem of structured clutter covariance matrix (CCM) in space-time adaptive processing (STAP) for airborne radar systems is studied in this letter. By employing the prior knowledge and the persymmetric covariance structure, a new estimation algorithm is proposed based on the whitening ability of the covariance matrix. The proposed algorithm is robust to prior knowledge of different accuracy, and can whiten the observed interference data to obtain the optimal solution. In addition, the extended factored approach (EFA) is used in the optimization for dimensionality reduction, which reduces the computational burden. Simulation results show that the proposed algorithm can effectively improve STAP performance even under the condition of some errors in prior knowledge.

  • Substring Searchable Symmetric Encryption Based on an Improved DAWG

    Hiroaki YAMAMOTO  Ryosuke ODA  Yoshihiro WACHI  Hiroshi FUJIWARA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/06/08
      Vol:
    E105-A No:12
      Page(s):
    1578-1590

    A searchable symmetric encryption (SSE) scheme is a method that searches encrypted data without decrypting it. In this paper, we address the substring search problem such that for a set D of documents and a pattern p, we find all occurrences of p in D. Here, a document and a pattern are defined as a string. A directed acyclic word graph (DAWG), which is a deterministic finite automaton, is known for solving a substring search problem on a plaintext. We improve a DAWG so that all transitions of a DAWG have distinct symbols. Besides, we present a space-efficient and secure substring SSE scheme using an improved DAWG. The proposed substring SSE scheme consists of an index with a simple structure, and the size is O(n) for the total size n of documents.

  • How to Make a Secure Index for Searchable Symmetric Encryption, Revisited

    Yohei WATANABE  Takeshi NAKAI  Kazuma OHARA  Takuya NOJIMA  Yexuan LIU  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/05/25
      Vol:
    E105-A No:12
      Page(s):
    1559-1577

    Searchable symmetric encryption (SSE) enables clients to search encrypted data. Curtmola et al. (ACM CCS 2006) formalized a model and security notions of SSE and proposed two concrete constructions called SSE-1 and SSE-2. After the seminal work by Curtmola et al., SSE becomes an active area of encrypted search. In this paper, we focus on two unnoticed problems in the seminal paper by Curtmola et al. First, we show that SSE-2 does not appropriately implement Curtmola et al.'s construction idea for dummy addition. We refine SSE-2's (and its variants') dummy-adding procedure to keep the number of dummies sufficiently many but as small as possible. We then show how to extend it to the dynamic setting while keeping the dummy-adding procedure work well and implement our scheme to show its practical efficiency. Second, we point out that the SSE-1 can cause a search error when a searched keyword is not contained in any document file stored at a server and show how to fix it.

  • A New Construction of Asymmetric ZCZ Sequence Sets

    Li CUI  Xiaoyu CHEN  Yubo LI  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/03/29
      Vol:
    E105-A No:10
      Page(s):
    1392-1400

    An asymmetric zero correlation zone (A-ZCZ) sequence set can be regarded as a special type of ZCZ sequence set, which consists of multiple sequence subsets. Each subset is a ZCZ sequence set, and have a common zero cross-correlation zone (ZCCZ) between sequences from different subsets. This paper supplements an existing construction of A-ZCZ sequence sets and further improves the research results. Besides, a new construction of A-ZCZ sequence sets is proposed by matrices transformation. The obtained sequence sets are optimal with respect to theoretical bound, and the parameters can be chosen more flexibly, such as the number of subsets and the lengths of ZCCZ between sequences from different subsets. Moreover, as the diversity of the orthogonal matrices and the flexibility of initial matrix, more A-ZCZ sequence sets can be obtained. The resultant sequence sets presented in this paper can be applied to multi-cell quasi-synchronous code-division multiple-access (QS-CDMA) systems, to eliminate the interference not only from the same cell but also from adjacent cells.

  • S-to-X Band 360-Degree RF Phase Detector IC Consisting of Symmetrical Mixers and Tunable Low-Pass Filters

    Akihito HIRAI  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    559-567

    This paper demonstrates that a 360° radio-frequency phase detector consisting of a combination of symmetrical mixers and 45° phase shifters with tunable devices can achieve a low phase-detection error over a wide frequency range. It is shown that the phase detection error does not depend on the voltage gain of the 45° phase shifter. This allows the usage of tunable devices as 45° phase shifters for a wide frequency range with low phase-detection errors. The fabricated phase detector having tunable low-pass filters as the tunable device demonstrates phase detection errors lower than 2.0° rms in the frequency range from 3.0 GHz to 10.5 GHz.

  • High-Power High-Efficiency GaN HEMT Doherty Amplifiers for Base Station Applications Open Access

    Andrei GREBENNIKOV  James WONG  Hiroaki DEGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/02/24
      Vol:
    E104-C No:10
      Page(s):
    488-495

    In this paper, the high-power high-efficiency asymmetric Doherty power amplifiers based on high-voltage GaN HEMT devices with internal input matching for base station applications are proposed and described. For a three-way 1:2 asymmetric Doherty structures, an exceptionally high output power of 1 kW with a peak efficiency of 83% and a linear flat power gain of about 15 dB was achieved in a frequency band of 2.11-2.17 GHz, whereas an output power of 59.5 dBm with a peak efficiency of 78% and linear power gain of 12 dB and an output power of 59.2 dBm with a peak efficiency of 65% and a linear power gain of 13 dB were obtained across 1.8-2.2 GHz. To provide a high-efficiency broadband operation, the concept of inverted Doherty structure is applied and described in detail. By using a high-power broadband inverted Doherty amplifier architecture with a 2×120-W GaN HEMT transistor, a saturated power of greater than 54 dBm, a linear power gain of greater than 13 dB and a drain efficiency of greater than 50% at 7-dB power backoff in a frequency bandwidth of 1.8-2.7 GHz were obtained.

  • Doherty Amplifier Design Based on Asymmetric Configuration Scheme Open Access

    Ryo ISHIKAWA  Yoichiro TAKAYAMA  Kazuhiko HONJO  

     
    INVITED PAPER

      Pubricized:
    2021/04/16
      Vol:
    E104-C No:10
      Page(s):
    496-505

    A practical Doherty amplifier design method has been developed based on an asymmetric configuration scheme. By embedding a load modulation function into matching circuits of a carrier amplifier (CA) and a peaking amplifier (PA) in the Doherty amplifier, an issue of the Doherty amplifier design is boiled down to the CA and PA matching circuit design. The method can be applied to transistors with unknown parasitic elements if optimum termination impedance conditions for the transistor are obtained from a source-/load-pull technique in simulation or measurement. The design method was applied to GaN HEMT Doherty amplifier MMICs. The fabricated 4.5-GHz-band GaN HEMT Doherty amplifier MMIC exhibited a maximum drain efficiency of 66% and a maximum power-added efficiency (PAE) of 62% at 4.1GHz, with a saturation output power of 36dBm. In addition, PAE of 50% was achieved at 4.1GHz on a 7.2-dB output back-off (OBO) condition. The fabricated 8.5-GHz-band GaN HEMT Doherty amplifier MMIC exhibited a maximum drain efficiency of 53% and a maximum PAE of 44% at 8.6GHz, with a saturation output power of 36dBm. In addition, PAE of 35% was achieved at 8.6GHz on a 6.7-dB (OBO). And, the fabricated 12-GHz-band GaN HEMT Doherty amplifier MMIC exhibited a maximum drain efficiency of 57% and a maximum PAE of 52% at 12.4GHz, with a saturation output power of 34dBm. In addition, PAE of 32% was achieved at 12.4GHz on a 9.5-dB (OBO) condition.

  • Asymmetric Tobit Analysis for Correlation Estimation from Censored Data

    HongYuan CAO  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/07/19
      Vol:
    E104-D No:10
      Page(s):
    1632-1639

    Contamination of water resources with pathogenic microorganisms excreted in human feces is a worldwide public health concern. Surveillance of fecal contamination is commonly performed by routine monitoring for a single type or a few types of microorganism(s). To design a feasible routine for periodic monitoring and to control risks of exposure to pathogens, reliable statistical algorithms for inferring correlations between concentrations of microorganisms in water need to be established. Moreover, because pathogens are often present in low concentrations, some contaminations are likely to be under a detection limit. This yields a pairwise left-censored dataset and complicates computation of correlation coefficients. Errors of correlation estimation can be smaller if undetected values are imputed better. To obtain better imputations, we utilize side information and develop a new technique, the asymmetric Tobit model which is an extension of the Tobit model so that domain knowledge can be exploited effectively when fitting the model to a censored dataset. The empirical results demonstrate that imputation with domain knowledge is effective for this task.

  • Indifferentiability of SKINNY-HASH Internal Functions

    Akinori HOSOYAMADA  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/10
      Vol:
    E104-A No:9
      Page(s):
    1156-1162

    We provide a formal proof for the indifferentiability of SKINNY-HASH internal function from a random oracle. SKINNY-HASH is a family of sponge-based hash functions that use functions (instead of permutations) as primitives, and it was selected as one of the second round candidates of the NIST lightweight cryptography competition. Its internal function is constructed from the tweakable block cipher SKINNY. The construction of the internal function is very simple and the designers claim n-bit security, where n is the block length of SKINNY. However, a formal security proof of this claim is not given in the original specification of SKINNY-HASH. In this paper, we formally prove that the internal function of SKINNY-HASH has n-bit security, i.e., it is indifferentiable from a random oracle up to O(2n) queries, substantiating the security claim of the designers.

  • Practical Design Methodology of Mode-Conversion-Free Tightly Coupled Asymmetrically Tapered Bend for High-Density Differential Wiring Open Access

    Chenyu WANG  Kengo IOKIBE  Yoshitaka TOYOTA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/09/15
      Vol:
    E104-B No:3
      Page(s):
    304-311

    The plain bend in a pair of differential transmission lines causes a path difference, which leads to differential-to-common mode conversion due to the phase difference. This conversion can cause serious common-mode noise issues. We previously proposed a tightly coupled asymmetrically tapered bend to suppress forward differential-to-common mode conversion and derived the constraint conditions for high-density wiring. To provide sufficient suppression of mode conversion, however, the additional correction was required to make the effective path difference vanish. This paper proposes a practical and straightforward design methodology by using a very tightly coupled bend (decreasing the line width and the line separation of the tightly coupled bend). Full-wave simulations below 20GHz demonstrated that sufficient suppression of the forward differential-to-common mode conversion is successfully achieved as designed. Measurements showed that our design methodology is effective.

  • A Compact RTD-Based Push-Push Oscillator Using a Symmetrical Spiral Inductor

    Kiwon LEE  Yongsik JEONG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/07/09
      Vol:
    E104-C No:1
      Page(s):
    37-39

    In this paper, a compact microwave push-push oscillator based on a resonant tunneling diode (RTD) has been fabricated and demonstrated. A symmetrical spiral inductor structure has been used in order to reduce a chip area. The designed symmetric inductor is integrated into the InP-based RTD monolithic microwave integrated circuit (MMIC) technology. The circuit occupies a compact active area of 0.088 mm2 by employing symmetric inductor. The fabricated RTD oscillator shows an extremely low DC power consumption of 87 µW at an applied voltage of 0.47 V with good figure-of-merit (FOM) of -191 dBc/Hz at an oscillation frequency of 27 GHz. This is the first implementation as the RTD push-push oscillator with the symmetrical spiral inductor.

  • Strongly Secure Identity-Based Key Exchange with Single Pairing Operation

    Junichi TOMIDA  Atsushi FUJIOKA  Akira NAGAI  Koutarou SUZUKI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    58-68

    This paper proposes an id-eCK secure identity-based authenticated key exchange (ID-AKE) scheme, where the id-eCK security implies that a scheme resists against leakage of all combinations of master, static, and ephemeral secret keys except ones trivially break the security. Most existing id-eCK secure ID-AKE schemes require two symmetric pairing operations or a greater number of asymmetric pairing, which is faster than symmetric one, operations to establish a session key. However, our scheme is realized with a single asymmetric pairing operation for each party, and this is an advantage in efficiency. The proposed scheme is based on the ID-AKE scheme by McCullagh and Barreto, which is vulnerable to an active attack. To achieve id-eCK security, we apply the HMQV construction and the NAXOS technique to the McCullagh-Barreto scheme. The id-eCK security is proved under the external Diffie-Hellman for target group assumption and the q-gap-bilinear collision attack assumption.

  • Asymmetric Learning for Stereo Matching Cost Computation

    Zhongjian MA  Dongzhen HUANG  Baoqing LI  Xiaobing YUAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/07/13
      Vol:
    E103-D No:10
      Page(s):
    2162-2167

    Current stereo matching methods benefit a lot from the precise stereo estimation with Convolutional Neural Networks (CNNs). Nevertheless, patch-based siamese networks rely on the implicit assumption of constant depth within a window, which does not hold for slanted surfaces. Existing methods for handling slanted patches focus on post-processing. In contrast, we propose a novel module for matching cost networks to overcome this bias. Slanted objects appear horizontally stretched between stereo pairs, suggesting that the feature extraction in the horizontal direction should be different from that in the vertical direction. To tackle this distortion, we utilize asymmetric convolutions in our proposed module. Experimental results show that the proposed module in matching cost networks can achieve higher accuracy with fewer parameters compared to conventional methods.

  • Method of Measuring Conducted Noise Voltage with a Floating Measurement System to Ground Open Access

    Naruto ARAI  Ken OKAMOTO  Jun KATO  Yoshiharu AKIYAMA  

     
    PAPER

      Pubricized:
    2020/04/08
      Vol:
    E103-B No:9
      Page(s):
    903-910

    This paper describes a method of measuring the unsymmetric voltage of conducted noise using a floating measurement system. Here, floating means that there is no physical connection to the reference ground. The method works by correcting the measured voltage to the desired unsymmetric voltage using the capacitance between the measurement instrument and the reference ground plane acting as the return path of the conducted electromagnetic noise. The existing capacitance measurement instrument needs a probe in contact with the ground, so it is difficult to use for on-site measurement of stray capacitance to ground at troubleshooting sites where the ground plane is not exposed or no ground connection point is available. The authors have developed a method of measuring stray capacitance to ground that does not require physical connection of the probe to the ground plane. The developed method can be used to estimate the capacitance between the measurement instrument and ground plane even if the distance and relative permittivity of the space are unknown. And a method is proposed for correcting the voltage measured with the floating measurement system to obtain the unsymmetric voltage of the noise by using the measured capacitance to ground. In the experiment, the unsymmetric voltage of a sinusoidal wave transmitting on a co-axial cable was measured with a floating oscilloscope in a shield room and the measured voltage was corrected to within 2dB of expected voltage by using the capacitance measured with the developed method. In addition, the voltage of a rectangular wave measured with the floating oscilloscope, which displays sag caused by the stray capacitance to ground, was corrected to a rectangular wave without sag. This means that the phase of the unsymmetric voltage can also be corrected by the measured stray capacitance. From these results, the effectiveness of the proposed methods is shown.

  • On Irreducibility of the Stream Version of Asymmetric Binary Systems

    Hiroshi FUJISAKI  

     
    PAPER-Information Theory

      Vol:
    E103-A No:5
      Page(s):
    757-768

    The interval in ℕ composed of finite states of the stream version of asymmetric binary systems (ABS) is irreducible if it admits an irreducible finite-state Markov chain. We say that the stream version of ABS is irreducible if its interval is irreducible. Duda gave a necessary condition for the interval to be irreducible. For a probability vector (p,1-p), we assume that p is irrational. Then, we give a necessary and sufficient condition for the interval to be irreducible. The obtained conditions imply that, for a sufficiently small ε, if p∈(1/2,1/2+ε), then the stream version of ABS could not be practically irreducible.

  • Accelerating the Held-Karp Algorithm for the Symmetric Traveling Salesman Problem

    Kazuro KIMURA  Shinya HIGA  Masao OKITA  Fumihiko INO  

     
    PAPER-Fundamentals of Information System

      Pubricized:
    2019/08/23
      Vol:
    E102-D No:12
      Page(s):
    2329-2340

    In this paper, we propose an acceleration method for the Held-Karp algorithm that solves the symmetric traveling salesman problem by dynamic programming. The proposed method achieves acceleration with two techniques. First, we locate data-independent subproblems so that the subproblems can be solved in parallel. Second, we reduce the number of subproblems by a meet in the middle (MITM) technique, which computes the optimal path from both clockwise and counterclockwise directions. We show theoretical analysis on the impact of MITM in terms of the time and space complexities. In experiments, we compared the proposed method with a previous method running on a single-core CPU. Experimental results show that the proposed method on an 8-core CPU was 9.5-10.5 times faster than the previous method on a single-core CPU. Moreover, the proposed method on a graphics processing unit (GPU) was 30-40 times faster than that on an 8-core CPU. As a side effect, the proposed method reduced the memory usage by 48%.

1-20hit(201hit)