The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

2801-2820hit(42807hit)

  • Different Antenna Interleaved Allocation with Full and Divided WHT/DFT Spreading for HTRCI-MIMO/OFDM

    Yuta IDA  Takahiro MATSUMOTO  Shinya MATSUFUJI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:12
      Page(s):
    1438-1446

    The spreading technique can improve system performance since it mitigates the influence of deeply faded subcarrier channels. Proposals for implementing orthogonal frequency division multiplexing (OFDM) systems include frequency symbol spreading (FSS) based on the Walsh-Hadamard transform (WHT) and the discrete Fourier transform (DFT). In a single carrier frequency division multiplexing (SC-FDMA), good performance is obtained by the interleaved subcarrier allocation. Moreover, in a multiple-input multiple-output (MIMO), interleaving the operation of the different transmit antennas is also effective. By combining these techniques, in this paper, we propose the different antenna interleaved allocation with the full and divided WHT/DFT spreading for a high time resolution carrier interferometry (HTRCI) MIMO-OFDM.

  • Analysis of Decoding Error Probability of Spatially “Mt. Fuji” Coupled LDPC Codes in Waterfall Region of the BEC

    Yuta NAKAHARA  Toshiyasu MATSUSHIMA  

     
    PAPER-Coding Theory

      Vol:
    E103-A No:12
      Page(s):
    1337-1346

    A spatially “Mt. Fuji” coupled (SFC) low-density parity-check (LDPC) ensemble is a modified version of the spatially coupled (SC) LDPC ensemble. Its decoding error probability in the waterfall region has been studied only in an experimental manner. In this paper, we theoretically analyze it over the binary erasure channel by modifying the expected graph evolution (EGE) and covariance evolution (CE) that have been used to analyze the original SC-LDPC ensemble. In particular, we derive the initial condition modified for the SFC-LDPC ensemble. Then, unlike the SC-LDPC ensemble, the SFC-LDPC ensemble has a local minimum on the solution of the EGE and CE. Considering the property of it, we theoretically expect the waterfall curve of the SFC-LDPC ensemble is steeper than that of the SC-LDPC ensemble. In addition, we also confirm it by numerical experiments.

  • FOREWORD Open Access

    Noriyuki MINEGISHI  

     
    FOREWORD

      Vol:
    E103-A No:12
      Page(s):
    1407-1407
  • High Level Congestion Detection from C/C++ Source Code for High Level Synthesis Open Access

    Masato TATSUOKA  Mineo KANEKO  

     
    PAPER

      Vol:
    E103-A No:12
      Page(s):
    1437-1446

    High level synthesis (HLS) is a source-code-driven Register Transfer Level (RTL) design tool, and the performance, the power consumption, and the area of a generated RTL are limited partly by the description of a HLS input source code. In order to break through such kind of limitation and to get a further optimized RTL, the optimization of the input source code is indispensable. Routing congestion is one of such problems we need to consider the refinement of a HLS input source code. In this paper, we propose a novel HLS flow that performs code improvements by detecting congested parts directly from HLS input source code without using physical logic synthesis, and regenerating the input source code for HLS. In our approach, the origin of the wire congestion is detected from the HLS input source code by applying pattern matching on Program-Dependence Graph (PDG) constructed from the HLS input source code, the possibility of wire congestion is reported.

  • Smart Tableware-Based Meal Information Recognition by Comparing Supervised Learning and Multi-Instance Learning

    Liyang ZHANG  Hiroyuki SUZUKI  Akio KOYAMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/09/18
      Vol:
    E103-D No:12
      Page(s):
    2643-2648

    In recent years, with the improvement of health awareness, people have paid more and more attention to proper meal. Existing research has shown that a proper meal can help people prevent lifestyle diseases such as diabetes. In this research, by attaching sensors to the tableware, the information during the meal can be captured, and after processing and analyzing it, the meal information, such as time and sequence of meal, can be obtained. This paper introduces how to use supervised learning and multi-instance learning to deal with meal information and a detailed comparison is made. Three supervised learning algorithms and two multi-instance learning algorithms are used in the experiment. The experimental results showed that although the supervised learning algorithms have achieved good results in F-score, the multi-instance learning algorithms have achieved better results not only in accuracy but also in F-score.

  • Multi-Resolution Fusion Convolutional Neural Networks for Intrapulse Modulation LPI Radar Waveforms Recognition

    Xue NI  Huali WANG  Ying ZHU  Fan MENG  

     
    PAPER-Sensing

      Pubricized:
    2020/06/15
      Vol:
    E103-B No:12
      Page(s):
    1470-1476

    Low Probability of Intercept (LPI) radar waveform has complex and diverse modulation schemes, which cannot be easily identified by the traditional methods. The research on intrapulse modulation LPI radar waveform recognition has received increasing attention. In this paper, we propose an automatic LPI radar waveform recognition algorithm that uses a multi-resolution fusion convolutional neural network. First, signals embedded within the noise are processed using Choi-William Distribution (CWD) to obtain time-frequency feature images. Then, the images are resized by interpolation and sent to the proposed network for training and identification. The network takes a dual-channel CNN structure to obtain features at different resolutions and makes features fusion by using the concatenation and Inception module. Extensive simulations are carried out on twelve types of LPI radar waveforms, including BPSK, Costas, Frank, LFM, P1~P4, and T1~T4, corrupted with additive white Gaussian noise of SNR from 10dB to -8dB. The results show that the overall recognition rate of the proposed algorithm reaches 95.1% when the SNR is -6dB. We also try various sample selection methods related to the recognition task of the system. The conclusion is that reducing the samples with SNR above 2dB or below -8dB can effectively improve the training speed of the network while maintaining recognition accuracy.

  • FOREWORD Open Access

    Kazushi MIMURA  

     
    FOREWORD

      Vol:
    E103-A No:12
      Page(s):
    1324-1324
  • Opponent's Preference Estimation Considering Their Offer Transition in Multi-Issue Closed Negotiations

    Yuta HOSOKAWA  Katsuhide FUJITA  

     
    PAPER

      Pubricized:
    2020/09/07
      Vol:
    E103-D No:12
      Page(s):
    2531-2539

    In recent years, agreement technologies have garnered interest among agents in the field of multi-agent systems. Automated negotiation is one of the agreement technologies, in which agents negotiate with each other to make an agreement so that they can solve conflicts between their preferences. Although most agents keep their own preferences private, it is necessary to estimate the opponent's preferences to obtain a better agreement. Therefore, opponent modeling is one of the most important elements in automated negotiating strategy. A frequency model is widely used for opponent modeling because of its robustness against various types of strategy while being easy to implement. However, existing frequency models do not consider the opponent's proposal speed and the transition of offers. This study proposes a novel frequency model that considers the opponent's behavior using two main elements: the offer ratio and the weighting function. The offer ratio stabilizes the model against changes in the opponent's offering speed, whereas the weighting function takes the opponent's concession into account. The two experiments conducted herein show that our proposed model is more accurate than other frequency models. Additionally, we find that the agent with the proposed model performs with a significantly higher utility value in negotiations.

  • Unconstrained Facial Expression Recognition Based on Feature Enhanced CNN and Cross-Layer LSTM

    Ying TONG  Rui CHEN  Ruiyu LIANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2020/07/30
      Vol:
    E103-D No:11
      Page(s):
    2403-2406

    LSTM network have shown to outperform in facial expression recognition of video sequence. In view of limited representation ability of single-layer LSTM, a hierarchical attention model with enhanced feature branch is proposed. This new network architecture consists of traditional VGG-16-FACE with enhanced feature branch followed by a cross-layer LSTM. The VGG-16-FACE with enhanced branch extracts the spatial features as well as the cross-layer LSTM extracts the temporal relations between different frames in the video. The proposed method is evaluated on the public emotion databases in subject-independent and cross-database tasks and outperforms state-of-the-art methods.

  • Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric Open Access

    Roberto PROIETTI  Xian XIAO  Marjan FARIBORZ  Pouya FOTOUHI  Yu ZHANG  S. J. Ben YOO  

     
    INVITED PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1190-1198

    This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.

  • Corrected Stochastic Dual Coordinate Ascent for Top-k SVM

    Yoshihiro HIROHASHI  Tsuyoshi KATO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/08/06
      Vol:
    E103-D No:11
      Page(s):
    2323-2331

    Currently, the top-k error ratio is one of the primary methods to measure the accuracy of multi-category classification. Top-k multiclass SVM was designed to minimize the empirical risk based on the top-k error ratio. Two SDCA-based algorithms exist for learning the top-k SVM, both of which have several desirable properties for achieving optimization. However, both algorithms suffer from a serious disadvantage, that is, they cannot attain the optimal convergence in most cases owing to their theoretical imperfections. As demonstrated through numerical simulations, if the modified SDCA algorithm is employed, optimal convergence is always achieved, in contrast to the failure of the two existing SDCA-based algorithms. Finally, our analytical results are presented to clarify the significance of these existing algorithms.

  • Generative Adversarial Network Using Weighted Loss Map and Regional Fusion Training for LDR-to-HDR Image Conversion

    Sung-Woon JUNG  Hyuk-Ju KWON  Dong-Min SON  Sung-Hak LEE  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2020/08/18
      Vol:
    E103-D No:11
      Page(s):
    2398-2402

    High dynamic range (HDR) imaging refers to digital image processing that modifies the range of color and contrast to enhance image visibility. To create an HDR image, two or more images that include various information are needed. In order to convert low dynamic range (LDR) images to HDR images, we consider the possibility of using a generative adversarial network (GAN) as an appropriate deep neural network. Deep learning requires a great deal of data in order to build a module, but once the module is created, it is convenient to use. In this paper, we propose a weight map for local luminance based on learning to reconstruct locally tone-mapped images.

  • On the Calculation of the G-MGF for Two-Ray Fading Model with Its Applications in Communications

    Jinu GONG  Hoojin LEE  Rumin YANG  Joonhyuk KANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/05/15
      Vol:
    E103-A No:11
      Page(s):
    1308-1311

    Two-ray (TR) fading model is one of the fading models to represent a worst-case fading scenario. We derive the exact closed-form expressions of the generalized moment generating function (G-MGF) for the TR fading model, which enables us to analyze the numerous types of wireless communication applications. Among them, we carry out several analytical results for the TR fading model, including the exact ergodic capacity along with asymptotic expressions and energy detection performance. Finally, we provide numerical results to validate our evaluations.

  • Practical Card-Based Protocol for Three-Input Majority Open Access

    Kenji YASUNAGA  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2020/05/14
      Vol:
    E103-A No:11
      Page(s):
    1296-1298

    We present a card-based protocol for computing a three-input majority using six cards. The protocol essentially consists of performing a simple XOR protocol two times. Compared to the existing protocols, our protocol does not require private operations other than choosing cards.

  • Fabrication and Strain Vector Characteristics of Multicore Fiber Based FBG

    Zhao SUN  Shunge DENG  Xin MA  Haimei LUO  Xinwan LI  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1305-1309

    Through novel rotation writing method of Bragg grating in multicore fiber, its strain vector characteristics are analyzed. The relation between the rotation angle and the strain curvature sensitivity is obtained. Reconstruction of strain vector is verified.

  • Design and Performance Analysis of a Skin-Stretcher Device for Urging Head Rotation

    Takahide ITO  Yuichi NAKAMURA  Kazuaki KONDO  Espen KNOOP  Jonathan ROSSITER  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/08/03
      Vol:
    E103-D No:11
      Page(s):
    2314-2322

    This paper introduces a novel skin-stretcher device for gently urging head rotation. The device pulls and/or pushes the skin on the user's neck by using servo motors. The user is induced to rotate his/her head based on the sensation caused by the local stretching of skin. This mechanism informs the user when and how much the head rotation is requested; however it does not force head rotation, i.e., it allows the user to ignore the stimuli and to maintain voluntary movements. We implemented a prototype device and analyzed the performance of the skin stretcher as a human-in-the-loop system. Experimental results define its fundamental characteristics, such as input-output gain, settling time, and other dynamic behaviors. Features are analyzed, for example, input-output gain is stable within the same installation condition, but various between users.

  • Impact of Sampling and Quantization on Kramers-Kronig Relation-Based Direct Detection Open Access

    Takaha FUJITA  Kentaro TOBA  Kariyawasam Indipalage Amila SAMPATH  Joji MAEDA  

     
    PAPER

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:11
      Page(s):
    1291-1298

    Impact of sampling frequency and the number of quantization bit of analog-to-digital conversion (ADC) in a direct detection lightwave system using Kramers-Kronig (KK) relation, which has been attracting attention in recent years, are numerically investigated. We studied the effect of spectral broadening caused by nonlinear operations (logarithm, square root) of the KK algorithm when the frequency gap (shift frequency) between the modulated signal and the optical tone is varied. We found that reception performances depend on both the ADC bandwidth and the relative positions of the optical tone and the spectrum. Spectral broadening caused by the logarithm operation of the KK algorithm is found to be the dominant factor of signal distortion in an ADC bandwidth limited system. We studied the effect of the number of quantization bit on the error vector magnitude (EVM) of KK relation based reception in a carrier-to-signal power ratio (CSPR) adjustable transmission system. We found that performances of KK relation based receiver can be improved by increasing the number of quantization bits. For minimum-phase-condition satisfied KK receiver, the required number of quantization bit was found to be 5 bits or more for detection of QPSK, 16-QAM and 64-QAM-modulated signal after 20-km transmission.

  • Efficient Detection for Large-Scale MIMO Systems Using Dichotomous Coordinate Descent Iterations

    Zhi QUAN  Shuhua LV  Li JIANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2020/05/08
      Vol:
    E103-B No:11
      Page(s):
    1310-1317

    Massive multiple-input multiple-output (MIMO) is an enabling technology for next-generation wireless systems because it provides significant improvements in data rates compared to existing small-scale MIMO systems. However, the increased number of antennas results in high computational complexity for data detection, and requires more efficient detection algorithms. In this paper, we propose a new data detector based on a box-constrained complex-valued dichotomous coordinate descent (BCC-DCD) algorithm for large-scale MIMO systems. The proposed detector involves two steps. First, a transmitted data vector is detected using the BCC-DCD algorithm with a large number of iterations and high solution precision. Second, an improved soft output is generated by reapplying the BCC-DCD algorithm, but with a considerably smaller number of iterations and 1-bit solution precision. Numerical results demonstrate that the proposed method outperforms existing advanced detectors while possessing lower complexity. Specifically, the proposed method provides significantly better detection performance than a BCC-DCD algorithm with similar complexity. The performance advantage increases as the signal-to-noise ratio and the system size increase.

  • Proposal and Verification of Auto Calibration Technique for Bias Control Circuit Connecting to Built-In Optical Power Monitor in Imperfect IQ-Modulator

    Hiroto KAWAKAMI  Shoichiro KUWAHARA  Yoshiaki KISAKA  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1299-1304

    We show that imperfection in an IQ-modulator degrades the accuracy of the auto bias control (ABC) circuit connected to the modulator's complementary port. Theoretical analyses show that the IQ-modulator constructed by a nested Mach-Zehnder modulator with a low extinction ratio can distort a constellation of modulated light observed at the complementary port. We propose an auto calibration technique for the ABC circuit that can effectively suppress this degradation. Experimental results using 32-Gbaud, 16-QAM signals showed the measured Q-factor improved by 0.5dB with our proposed technique.

  • Dynamic Image Adjustment Method and Evaluation for Glassless 3D Viewing Systems

    Takayuki NAKATA  Isao NISHIHARA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2020/08/24
      Vol:
    E103-D No:11
      Page(s):
    2351-2361

    In this paper, we propose an accurate calibration method for glassless stereoscopic systems. The method uses a lenticular lens on a general display. Glassless stereoscopic displays are currently used in many fields; however, accurately adjusting their physical display position is difficult because an accuracy of several microns or one hundredth of a degree is required, particularly given their larger display area. The proposed method enables a dynamic adjustment of the positions of images on the display to match various physical conditions in three-dimensional (3D) displays. In particular, compared with existing approaches, this avoids degradation of the image quality due to the image location on the screen while improving the image quality by local mapping. Moreover, it is shown to decrease the calibration time by performing simultaneous processing for each local area. As a result of the calibration, the offset jitter representing the crosstalk reduces from 14.946 to 8.645 mm. It is shown that high-quality 3D videos can be generated. Finally, we construct a stereoscopic viewing system using a high-resolution display and lenticular lens and produce high-quality 3D images with automatic calibration.

2801-2820hit(42807hit)