The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] AIN(1937hit)

1-20hit(1937hit)

  • Convergence Characteristics of Domain Decomposition Method for Full-Wave Electromagnetic Analysis Open Access

    Toshio MURAYAMA  Amane TAKEI  

     
    PAPER

      Pubricized:
    2024/07/23
      Vol:
    E107-C No:11
      Page(s):
    465-471

    A domain decomposition method is widely utilized for analyzing large-scale electromagnetic problems. The method decomposes the target model into small independent subdomains. An electromagnetic analysis has inherently suffers from late convergence analyzed with iterative algorithms such as Krylov subspace algorithms. The DDM remedies this issue by decomposing the total system into subdomain problems and gathering the local results as an interface problem to adjust to achieve the total solution. In this paper we report the convergence properties of the domain decomposition method while modifying the size of local domain and the region shape on several mesh sizes. As experimental results show, the convergence speed depends on the number of interface problem variables and the selection of the local region shapes. In addition to that the convergence property differs according to the target frequencies. In general it is demonstrated that the convergence speed can be accelerated with large cubic subdomain shape. We propose the subdomain selection strategies based on the analysis of the condition numbers of the governing equation.

  • High Stability Code Tracking for Band-Limited DSSS Systems Open Access

    Zhiwei LU  Yiwen JIAO  Yudi CHEN  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:11
      Page(s):
    706-718

    In this paper, we study the problem of high stability code tracking for band-limited direct sequence spread spectrum (DSSS) systems. In band-limited DSSS systems carrying critical applications, high stability is required in addition to low error variance for code tracking. Therefore, we propose a high stability code tracking method for band-limited DSSS systems, which constructs frequency domain vectors from the received signal, reduces the dimension of the vectors by frequency domain integration and dump, and estimates the time-delay error by the subspace method. We also give a closed-form expression for the steady-state time-delay error variance of the proposed method, which can be used to analyze the error variance performance theoretically and design proper band-limited DSSS systems. The theoretical analysis and simulation results show that the proposed method is able to enhance both the maximum and linear code tracking ranges, thus realizing high stability code tracking, and has constant error variance performance and appropriate computational complexity.

  • Advancements in Terahertz Communication: Harnessing the 300 GHz Band for High-Efficiency, High-Capacity Wireless Networks Open Access

    Minoru FUJISHIMA  

     
    INVITED PAPER

      Pubricized:
    2024/03/08
      Vol:
    E107-C No:10
      Page(s):
    366-375

    In this paper, we delve into wireless communications in the 300 GHz band, focusing in particular on the continuous bandwidth of 44 GHz from 252 GHz to 296 GHz, positioning it as a pivotal element in the trajectory toward 6G communications. While terahertz communications have traditionally been praised for the high speeds they can achieve using their wide bandwidth, focusing the beam has also shown the potential to achieve high energy efficiency and support numerous simultaneous connectivity. To this end, new performance metrics, EIRPλ and EINFλ, are introduced as important benchmarks for transmitter and receiver performance, and their consistency is discussed. We then show that, assuming conventional bandwidth and communication capacity, the communication distance is independent of carrier frequency. Located between radio waves and light in the electromagnetic spectrum, terahertz waves promise to usher in a new era of wireless communications characterized not only by high-speed communication, but also by convenience and efficiency. Improvements in antenna gain, beam focusing, and precise beam steering are essential to its realization. As these technologies advance, the paradigm of wireless communications is expected to be transformed. The synergistic effects of antenna gain enhancement, beam focusing, and steering will not only push high-speed communications to unprecedented levels, but also lay the foundation for a wireless communications landscape defined by unparalleled convenience and efficiency. This paper will discuss a future in which terahertz communications will reshape the contours of wireless communications as the realization of such technological breakthroughs draws near.

  • 3D Parallel ReRAM Computation-in-Memory for Hyperdimensional Computing Open Access

    Fuyuki KIHARA  Chihiro MATSUI  Ken TAKEUCHI  

     
    BRIEF PAPER

      Pubricized:
    2024/04/16
      Vol:
    E107-C No:10
      Page(s):
    436-439

    In this work, we propose a 1T1R ReRAM CiM architecture for Hyperdimensional Computing (HDC). The number of Source Lines and Bit Lines is reduced by introducing memory cells that are connected in series, which is especially advantageous when using a 3D implementation. The results of CiM operations contain errors, but HDC is robust against them, so that even if the XNOR operation has an error of 25%, the inference accuracy remains above 90%.

  • Integrating Event Elements for Chinese-Vietnamese Cross-Lingual Event Retrieval Open Access

    Yuxin HUANG  Yuanlin YANG  Enchang ZHU  Yin LIANG  Yantuan XIAN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2024/06/04
      Vol:
    E107-D No:10
      Page(s):
    1353-1361

    Chinese-Vietnamese cross-lingual event retrieval aims to retrieve the Vietnamese sentence describing the same event as a given Chinese query sentence from a set of Vietnamese sentences. Existing mainstream cross-lingual event retrieval methods rely on extracting textual representations from query texts and calculating their similarity with textual representations in other language candidate sets. However, these methods ignore the difference in event elements present during Chinese-Vietnamese cross-language retrieval. Consequently, sentences with similar meanings but different event elements may be incorrectly considered to describe the same event. To address this problem, we propose a cross-lingual retrieval method that integrates event elements. We introduce event elements as an additional supervisory signal, where we calculate the semantic similarity of event elements in two sentences using an attention mechanism to determine the attention score of the event elements. This allows us to establish a one-to-one correspondence between event elements in the text. Additionally, we leverage the multilingual pre-trained language model fine-tuned based on contrastive learning to obtain cross-language sentence representation to calculate the semantic similarity of the sentence texts. By combining these two approaches, we obtain the final text similarity score. Experimental results demonstrate that our proposed method achieves higher retrieval accuracy than the baseline model.

  • Enhanced Radar Emitter Recognition with Virtual Adversarial Training: A Semi-Supervised Framework Open Access

    Ziqin FENG  Hong WAN  Guan GUI  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2024/05/15
      Vol:
    E107-A No:9
      Page(s):
    1534-1541

    Radar emitter identification (REI) is a crucial function of electronic radar warfare support systems. The challenge emphasizes identifying and locating unique transmitters, avoiding potential threats, and preparing countermeasures. Due to the remarkable effectiveness of deep learning (DL) in uncovering latent features within data and performing classifications, deep neural networks (DNNs) have seen widespread application in radar emitter identification (REI). In many real-world scenarios, obtaining a large number of annotated radar transmitter samples for training identification models is essential yet challenging. Given the issues of insufficient labeled datasets and abundant unlabeled training datasets, we propose a novel REI method based on a semi-supervised learning (SSL) framework with virtual adversarial training (VAT). Specifically, two objective functions are designed to extract the semantic features of radar signals: computing cross-entropy loss for labeled samples and virtual adversarial training loss for all samples. Additionally, a pseudo-labeling approach is employed for unlabeled samples. The proposed VAT-based SS-REI method is evaluated on a radar dataset. Simulation results indicate that the proposed VAT-based SS-REI method outperforms the latest SS-REI method in recognition performance.

  • Pre-T Event-Triggered Controller with a Gain-Scaling Factor for a Chain of Integrators and Its Extension to Strict-Feedback Nonlinearity Open Access

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2024/04/30
      Vol:
    E107-A No:9
      Page(s):
    1561-1564

    We propose a pre-T event-triggered controller (ETC) for the stabilization of a chain of integrators. Our per-T event-triggered controller is a modified event-triggered controller by adding a pre-defined positive constant T to the event-triggering condition. With this pre-T, the immediate advantages are (i) the often complicated additional analysis regarding the Zeno behavior is no longer needed, (ii) the positive lower bound of interexecution times can be specified, (iii) the number of control input updates can be further reduced. We carry out the rigorous system analysis and simulations to illustrate the advantages of our proposed method over the traditional event-triggered control method.

  • A Distributed Efficient Blockchain Oracle Scheme for Internet of Things Open Access

    Youquan XIAN  Lianghaojie ZHOU  Jianyong JIANG  Boyi WANG  Hao HUO  Peng LIU  

     
    PAPER-Network System

      Vol:
    E107-B No:9
      Page(s):
    573-582

    In recent years, blockchain has been widely applied in the Internet of Things (IoT). Blockchain oracle, as a bridge for data communication between blockchain and off-chain, has also received significant attention. However, the numerous and heterogeneous devices in the IoT pose great challenges to the efficiency and security of data acquisition for oracles. We find that the matching relationship between data sources and oracle nodes greatly affects the efficiency and service quality of the entire oracle system. To address these issues, this paper proposes a distributed and efficient oracle solution tailored for the IoT, enabling fast acquisition of real-time off-chain data. Specifically, we first design a distributed oracle architecture that combines both Trusted Execution Environment (TEE) devices and ordinary devices to improve system scalability, considering the heterogeneity of IoT devices. Secondly, based on the trusted node information provided by TEE, we determine the matching relationship between nodes and data sources, assigning appropriate nodes for tasks to enhance system efficiency. Through simulation experiments, our proposed solution has been shown to effectively improve the efficiency and service quality of the system, reducing the average response time by approximately 9.92% compared to conventional approaches.

  • Permissionless Blockchain-Based Sybil-Resistant Self-Sovereign Identity Utilizing Attested Execution Secure Processors Open Access

    Koichi MORIYAMA  Akira OTSUKA  

     
    INVITED PAPER

      Pubricized:
    2024/04/15
      Vol:
    E107-D No:9
      Page(s):
    1112-1122

    This article describes the idea of utilizing Attested Execution Secure Processors (AESPs) that fit into building a secure Self-Sovereign Identity (SSI) system satisfying Sybil-resistance under permissionless blockchains. Today’s circumstances requiring people to be more online have encouraged us to address digital identity preserving privacy. There is a momentum of research addressing SSI, and many researchers approach blockchain technology as a foundation. SSI brings natural persons various benefits such as owning controls; on the other side, digital identity systems in the real world require Sybil-resistance to comply with Anti-Money-Laundering (AML) and other needs. The main idea in our proposal is to utilize AESPs for three reasons: first is the use of attested execution capability along with tamper-resistance, which is a strong assumption; second is powerfulness and flexibility, allowing various open-source programs to be executed within a secure enclave, and the third is that equipping hardware-assisted security in mobile devices has become a norm. Rafael Pass et al.’s formal abstraction of AESPs and the ideal functionality $\color{brown}{\mathcal{G}_\mathtt{att}}$ enable us to formulate how hardware-assisted security works for secure digital identity systems preserving privacy under permissionless blockchains mathematically. Our proposal of the AESP-based SSI architecture and system protocols, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$, demonstrates the advantages of building a proper SSI system that satisfies the Sybil-resistant requirement. The protocols may eliminate the online distributed committee assumed in other research, such as CanDID, because of assuming AESPs; thus, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$ allows not to rely on multi-party computation (MPC), bringing drastic flexibility and efficiency compared with the existing SSI systems.

  • Analytical Model of Maximum Operating Frequency of Class-D ZVS Inverter with Linearized Parasitic Capacitance and any Duty Ratio Open Access

    Yi XIONG  Senanayake THILAK  Yu YONEZAWA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Circuit Theory

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:8
      Page(s):
    1115-1126

    This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.

  • A Joint Coverage Constrained Task Offloading and Resource Allocation Method in MEC Open Access

    Daxiu ZHANG  Xianwei LI  Bo WEI  Yukun SHI  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E107-A No:8
      Page(s):
    1277-1285

    With the increase of the number of Mobile User Equipments (MUEs), numerous tasks that with high requirements of resources are generated. However, the MUEs have limited computational resources, computing power and storage space. In this paper, a joint coverage constrained task offloading and resource allocation method based on deep reinforcement learning is proposed. The aim is offloading the tasks that cannot be processed locally to the edge servers to alleviate the conflict between the resource constraints of MUEs and the high performance task processing. The studied problem considers the dynamic variability and complexity of the system model, coverage, offloading decisions, communication relationships and resource constraints. An entropy weight method is used to optimize the resource allocation process and balance the energy consumption and execution time. The results of the study show that the number of tasks and MUEs affects the execution time and energy consumption of the task offloading and resource allocation processes in the interest of the service provider, and enhances the user experience.

  • Zero-Order-Hold Triggered Control of a Chain of Integrators with an Arbitrary Sampling Period Open Access

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2023/12/25
      Vol:
    E107-A No:8
      Page(s):
    1374-1377

    We propose a zero-order-hold triggered control for a chain of integrators with an arbitrary sampling period. We analytically show that our control scheme globally asymptotically stabilizes the considered system. The key feature is that the pre-specified sampling period can be enlarged as desired by adjusting a gain-scaling factor. An example with various simulation results is given for clear illustration.

  • Waveguide Slot Array with Code-Division Multiplexing Function for Single RF Chain Digital Beamforming Open Access

    Narihiro NAKAMOTO  Kazunari KIHIRA  Toru FUKASAWA  Yoshio INASAWA  Naoki SHINOHARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:8
      Page(s):
    541-551

    This study presents a novel waveguide slot array with a code-division multiplexing function for single RF chain digital beamforming. The proposed antenna is comprised of a rectangular metallic waveguide’s bottom part and a multilayer printed circuit board (PCB) with the rectangular waveguide’s top wall and slot apertures. Multiple pairs of two symmetric longitudinal slots are etched on the metal surface of the PCB, and a PIN diode is mounted across each slot. The received signals of each slot pair are multiplexed in a code-division multiplexing fashion by switching the diodes’ bias according to the Walsh Hadamard code, and the original signals are then recovered through a despreading process in the digital domain for digital beamforming. A prototype antenna with eight slot pairs has been fabricated and tested for proof of concept. The measured results show the feasibility of the proposed antenna.

  • Method for Estimating Scatterer Information from the Response Waveform of a Backward Transient Scattering Field Using TD-SPT Open Access

    Keiji GOTO  Toru KAWANO  Munetoshi IWAKIRI  Tsubasa KAWAKAMI  Kazuki NAKAZAWA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2024/01/23
      Vol:
    E107-C No:8
      Page(s):
    210-222

    This paper proposes a scatterer information estimation method using numerical data for the response waveform of a backward transient scattering field for both E- and H-polarizations when a two-dimensional (2-D) coated metal cylinder is selected as a scatterer. It is assumed that a line source and an observation point are placed at different locations. The four types of scatterer information covered in this paper are the relative permittivity of a surrounding medium, the relative permittivity of a coating medium layer and its thickness, and the radius of a coated metal cylinder. Specifically, a time-domain saddle-point technique (TD-SPT) is used to derive scatterer information estimation formulae from the amplitude intensity ratios (AIRs) of adjacent backward transient scattering field components. The estimates are obtained by substituting the numerical data of the response waveforms of the backward transient scattering field components into the estimation formulae and performing iterative calculations. Furthermore, a minimum thickness of a coating medium layer for which the estimation method is valid is derived, and two kinds of applicable conditions for the estimation method are proposed. The effectiveness of the scatterer information estimation method is verified by comparing the estimates with the set values. The noise tolerance and convergence characteristics of the estimation method and the method of controlling the estimation accuracy are also discussed.

  • Extending Binary Neural Networks to Bayesian Neural Networks with Probabilistic Interpretation of Binary Weights Open Access

    Taisei SAITO  Kota ANDO  Tetsuya ASAI  

     
    PAPER

      Pubricized:
    2024/04/17
      Vol:
    E107-D No:8
      Page(s):
    949-957

    Neural networks (NNs) fail to perform well or make excessive predictions when predicting out-of-distribution or unseen datasets. In contrast, Bayesian neural networks (BNNs) can quantify the uncertainty of their inference to solve this problem. Nevertheless, BNNs have not been widely adopted owing to their increased memory and computational cost. In this study, we propose a novel approach to extend binary neural networks by introducing a probabilistic interpretation of binary weights, effectively converting them into BNNs. The proposed approach can reduce the number of weights by half compared to the conventional method. A comprehensive comparative analysis with established methods like Monte Carlo dropout and Bayes by backprop was performed to assess the performance and capabilities of our proposed technique in terms of accuracy and capturing uncertainty. Through this analysis, we aim to provide insights into the advantages of this Bayesian extension.

  • Confidence-Driven Contrastive Learning for Document Classification without Annotated Data Open Access

    Zhewei XU  Mizuho IWAIHARA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/04/19
      Vol:
    E107-D No:8
      Page(s):
    1029-1039

    Data sparsity has always been a problem in document classification, for which semi-supervised learning and few-shot learning are studied. An even more extreme scenario is to classify documents without any annotated data, but using only category names. In this paper, we introduce a nearest neighbor search-based method Con2Class to tackle this tough task. We intend to produce embeddings for predefined categories and predict category embeddings for all the unlabeled documents in a unified embedding space, such that categories can be easily assigned by searching the nearest predefined category in the embedding space. To achieve this, we propose confidence-driven contrastive learning, in which prompt-based templates are designed and MLM-maintained contrastive loss is newly proposed to finetune a pretrained language model for embedding production. To deal with the issue that no annotated data is available to validate the classification model, we introduce confidence factor to estimate the classification ability by evaluating the prediction confidence. The language model having the highest confidence factor is used to produce embeddings for similarity evaluation. Pseudo labels are then assigned by searching the semantically closest category name, which are further used to train a separate classifier following a progressive self-training strategy for final prediction. Our experiments on five representative datasets demonstrate the superiority of our proposed method over the existing approaches.

  • Cross-Corpus Speech Emotion Recognition Based on Causal Emotion Information Representation Open Access

    Hongliang FU  Qianqian LI  Huawei TAO  Chunhua ZHU  Yue XIE  Ruxue GUO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2024/04/12
      Vol:
    E107-D No:8
      Page(s):
    1097-1100

    Speech emotion recognition (SER) is a key research technology to realize the third generation of artificial intelligence, which is widely used in human-computer interaction, emotion diagnosis, interpersonal communication and other fields. However, the aliasing of language and semantic information in speech tends to distort the alignment of emotion features, which affects the performance of cross-corpus SER system. This paper proposes a cross-corpus SER model based on causal emotion information representation (CEIR). The model uses the reconstruction loss of the deep autoencoder network and the source domain label information to realize the preliminary separation of causal features. Then, the causal correlation matrix is constructed, and the local maximum mean difference (LMMD) feature alignment technology is combined to make the causal features of different dimensions jointly distributed independent. Finally, the supervised fine-tuning of labeled data is used to achieve effective extraction of causal emotion information. The experimental results show that the average unweighted average recall (UAR) of the proposed algorithm is increased by 3.4% to 7.01% compared with the latest partial algorithms in the field.

  • A Sealed-Bid Auction with Fund Binding: Preventing Maximum Bidding Price Leakage Open Access

    Kota CHIN  Keita EMURA  Shingo SATO  Kazumasa OMOTE  

     
    PAPER

      Pubricized:
    2024/02/06
      Vol:
    E107-D No:5
      Page(s):
    615-624

    In an open-bid auction, a bidder can know the budgets of other bidders. Thus, a sealed-bid auction that hides bidding prices is desirable. However, in previous sealed-bid auction protocols, it has been difficult to provide a “fund binding” property, which would guarantee that a bidder has funds more than or equal to the bidding price and that the funds are forcibly withdrawn when the bidder wins. Thus, such protocols are vulnerable to a false bidding. As a solution, many protocols employ a simple deposit method in which each bidder sends a deposit to a smart contract, which is greater than or equal to the bidding price, before the bidding phase. However, this deposit reveals the maximum bidding price, and it is preferable to hide this information. In this paper, we propose a sealed-bid auction protocol that provides a fund binding property. Our protocol not only hides the bidding price and a maximum bidding price, but also provides a fund binding property, simultaneously. For hiding the maximum bidding price, we pay attention to the fact that usual Ethereum transactions and transactions for sending funds to a one-time address have the same transaction structure, and it seems that they are indistinguishable. We discuss how much bidding transactions are hidden. We also employ DECO (Zhang et al., CCS 2020) that proves the validity of the data to a verifier in which the data are taken from a source without showing the data itself. Finally, we give our implementation which shows transaction fees required and compare it to a sealed-bid auction protocol employing the simple deposit method.

  • TECDR: Cross-Domain Recommender System Based on Domain Knowledge Transferor and Latent Preference Extractor Open Access

    Qi WANG  Yicheng DI  Lipeng HUANG  Guowei WANG  Yuan LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/01/18
      Vol:
    E107-D No:5
      Page(s):
    704-713

    When new users join a recommender system, traditional approaches encounter challenges in accurately understanding their interests due to the absence of historical user behavior data, thus making it difficult to provide personalized recommendations. Currently, two main methods are employed to address this issue from different perspectives. One approach is centered on meta-learning, enabling models to adapt faster to new tasks by sharing knowledge and experiences across multiple tasks. However, these methods often overlook potential improvements based on cross-domain information. The other method involves cross-domain recommender systems, which transfer learned knowledge to different domains using shared models and transfer learning techniques. Nonetheless, this approach has certain limitations, as it necessitates a substantial amount of labeled data for training and may not accurately capture users’ latent preferences when dealing with a limited number of samples. Therefore, a crucial need arises to devise a novel method that amalgamates cross-domain information and latent preference extraction to address this challenge. To accomplish this objective, we propose a Cross-domain Recommender System based on Domain Knowledge Transferor and Latent Preference Extractor (TECDR).  In TECDR, we have designed a Latent Preference Extractor that transforms user behaviors into representations of their latent interests in items. Additionally, we have introduced a Domain Knowledge Transfer mechanism for transferring knowledge and patterns between domains. Moreover, we leverage meta-learning-based optimization methods to assist the model in adapting to new tasks. The experimental results from three cross-domain scenarios demonstrate that TECDR exhibits outstanding performance across various cross-domain recommender scenarios.

  • Research on Building an ARM-Based Container Cloud Platform Open Access

    Lin CHEN  Xueyuan YIN  Dandan ZHAO  Hongwei LU  Lu LI  Yixiang CHEN  

     
    PAPER-General Fundamentals and Boundaries

      Pubricized:
    2023/08/07
      Vol:
    E107-A No:4
      Page(s):
    654-665

    ARM chips with low energy consumption and low-cost investment have been rapidly applied to smart office and smart entertainment including cloud mobile phones and cloud games. This paper first summarizes key technologies and development status of the above scenarios including CPU, memory, IO hardware virtualization characteristics, ARM hypervisor and container, GPU virtualization, network virtualization, resource management and remote transmission technologies. Then, in view of the current lack of publicly referenced ARM cloud constructing solutions, this paper proposes and constructs an implementation framework for building an ARM cloud, and successively focuses on the formal definition of virtualization framework, Android container system and resource quota management methods, GPU virtualization based on API remoting and GPU pass-through, and the remote transmission technology. Finally, the experimental results show that the proposed model and corresponding component implementation methods are effective, especially, the pass-through mode for virtualizing GPU resources has higher performance and higher parallelism.

1-20hit(1937hit)