The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

18021-18040hit(18690hit)

  • Hierarchical Analysis System for VLSI Power Supply Network

    Takeshi YOSHITOME  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1659-1665

    Since, in a VLSI circuit, the number of transistors and the clock frequency are constantly increasing, it is important to analyze the voltage drop and current density on a full chip's power networks. We propose a new hierarchical power analysis system named XPOWER. A new reduction algorithm for the resistance and current source network is used in this system. The algorithm utilizes the design hierarchy in nature and is independent of network topology. Networks at each level are reduced into small and equivalent networks, and this reduction is performed recursively from the bottom levels of the design hierarchy. At each step of the reduction, the network under consideration consists of two kinds of objects: (1) reduced child networks, and (2) the interconnection between child networks. After all networks have been reduced, circuit equationa are solved recursively from the top. This allows to decrease the size of the matrix to be solved and to reduce the execution time. Experimental results show that the factor of reduction in matrix size is from 1/10 to 1/40 and execution is six times faster than with flat analysis. The power networks of a 16 bit digital signal processor was analyzed within 15 minutes using XPOWER.

  • Morphology Based Thresholding for Character Extraction

    Yasuko TAKAHASHI  Akio SHIO  Kenichiro ISHII  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1208-1215

    The character binarization method MTC is developed for enhancing the recognition of characters in general outdoor images. Such recognition is traditionally difficult because of the influence of illumination changes, especially strong shadow, and also changes in character, such as apparent character sizes. One way to overcome such difficulties is to restrict objects to be processed by using strong hypotheses, such as type of object, object orientation and distance. Several systems for automatic license plate reading are being developed using such strong hypotheses. However. their strong assumptions limit their applications and complicate the extension of the systems. The MTC method assumes the most reasonable hypotheses possible for characters: they occupy plane areas, consist of narrow lines, and external shadow is considerably larger than character lines. The first step is to eliminate the effect of local brightness changes by enhancing feature including characters. This is achieved by applying mathematical morphology by using a logarithmic function. The enhanced gray-scale image is then binarized. Accurate binarization is achieved because local thresholds are determined from the edges detected in the image. The MTC method yields stable binary results under illumination changes, and, consequently, ensures high character reading rates. This is confirmed with a large number of images collected under a wide variety of weather conditions. It is also shown experimentally that MTC permits stable recognition rate even if the characters vary in size.

  • Scattering Characteristics of Stratified Chiral Slab

    Mitsuru TANAKA  Atsushi KUSUNOKI  

     
    PAPER-Scattering and Diffraction

      Vol:
    E76-C No:10
      Page(s):
    1443-1448

    Scattering characteristics of a stratified chiral slab, which is composed of dielectric chiral layers of different material properties and thicknesses, are extensively explored. Design considerations for optical filters are also presented for both the cases of normal and oblique incidence. In the analysis, the incident field is assumed to be a plane monochromatic wave of any arbitrary polarization. The transmitted and reflected electric fields are obtained by noting the fact that the electric field inside a chiral medium is expressed as a sum of the left- and right-circularly polarized plane waves of different phase velocities. Then one can describe the power densities and the Stokes parameters of the transmitted and reflected waves in terms of their field components. As is well known,the Stokes parameters characterize every possible state of polarization of a plane wave. Numerical examples are presented to show the effects of chirality on polarization conversion properties of the stratified chiral slab. The cross- and co-polarized powers and the Stokes parameters of the transmitted and reflected waves are computed for the incident wave of perpendicular polarization. The numerical results demonstrate novel depolarization properties of the slab with application to the design of efficient filters active at the optical region. It is seen from the results that the stratified chiral slab acts as a polarization-conversion transmission filter that passes only a cross-polarized component of the transmitted wave at some frequency band. Furthermore, the slab may be utilized as an antireflection filter for both the cross- and co-po1arized components of the reflected wave at the band region.

  • Test Sequence Generation for Sequential Circuits with Distinguishing Sequences

    Yoshinobu HIGAMI  Seiji KAJIHARA  Kozo KINOSHITA  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1730-1737

    In this paper we present a method to generate test sequences for stuck-at faults in sequential circuits which have distinguishing sequences. Since the circuit may have no distinguishing sequence, we use two design techniques for circuits which have distinguishing sequences. One is at state transition level and the other is at gate level. In our proposed method complete test sequence can be generated. The sequence consists of test vectors for the combinational part of the circuit, distinguishing sequences and transition sequences. The test vectors, which are generated by a combinational test generator, cause faulty staes or faulty output responses for a fault, and disinguishing sequences identify the differences between faulty states and fault free states. Transition sequences are necessary to make the state in the combinational vectors. And the distinguishing sequence and the transition sequence are used in the initializing sequence. Some techniques for shortening the test sequence is also proposed. The basic ideas of the techniques are to use a short initializing sequence and to find the order in concatenating sequences. But fault simulation is conducted so as not to miss any faults. The initializing sequence is obtained by using a distinguishing sequence. The efficiency of our method is shown in the experimental results for benchmark circuits.

  • Generalization Ability of Extended Cascaded Artificial Neural Network Architecture

    Joarder KAMRUZZAMAN  Yukio KUMAGAI  Hiromitsu HIKITA  

     
    LETTER-Neural Networks

      Vol:
    E76-A No:10
      Page(s):
    1877-1883

    We present an extension of the previously proposed 3-layer feedforward network called a cascaded network. Cascaded networks are trained to realize category classification employing binary input vectors and locally represented binary target output vectors. To realize a nonlinearly separable task the extended cascaded network presented here is consreucted by introducing high order cross producted inputs at the input layer. In the construction of the cascaded network, two 2-layer networks are first trained independently by delta rule and then cascaded. After cascading, the intermediate layer can be understood as a hidden layer which is trained to attain preassigned saturated outputs in response to the training set. In a cascaded network trained to categorize binary image patterns, saturation of hidden outputs reduces the effect of corrupted disturbances presented in the input. We demonstrated that the extended cascaded network was able to realize a nonlinearly separable task and yielded better generalization ability than the Backpropagation network.

  • Synthetic Aperture Radar Data Processing Using Nonstandard FFT Algorithm: JERS-1, a Case Study

    Riccardo LANARI  Haruto HIROSAWA  

     
    PAPER-Radar Signal Processing

      Vol:
    E76-B No:10
      Page(s):
    1271-1278

    A fully focused Synthetic Aperture Radar (SAR) image can be obtained only if the raw data processing procedure takes into account the space-variance of the SAR system transfer function. This paper presents a nonconventional Fast Fourier Transform (FFT) algorithm which allows an efficient compensation of the space-variant effect. It is specially designed for the SAR data of the Japanese Earth Resources Satellite (JERS-1) but can be extended to different cases.

  • Multi-Beam Airborne Pulsed-Doppler Radar System and Its PRF Tuning Effect for Clutter Rejection

    Michimasa KONDO  Sachiko ISHIKAWA  Takahiko FUJISAKA  Tetsuo KIRIMOTO  Tsutomu HASHIMOTO  

     
    PAPER-Radar System

      Vol:
    E76-B No:10
      Page(s):
    1263-1270

    A multi-beam airborne pulsed-Doppler radar (MBR) system is presented and its clutter rejection performance compared with conventional phased array radar (PAR)'s by PRF tuning is discussed. The pulsed-Doppler radar equations taking account of the multi-beam operation are introduced and some kinds of computer simulations for seeking the conditions to get maximum signal to clutter ratio are carried out. As a results of this, it is cleared that same order of signal to clutter ratio improvement gotten in high PRF operation by conventional PAR can be realized at lower PRF operation by MBR on clutter free area, and higher clutter rejection effect, which is proportional to beam numbers, is obtained under affection of both of mainlobe and sidelobe clutters with order of beam numbers. This also means observable numbers of range bin are increased in MBR operation.

  • A Third-Order Low-Pass Notch RC Active Filter with a Minimum Number of Equal-Valued Capacitors

    Yukio ISHIBASHI  

     
    LETTER-Analog Circuits and Signal Processing

      Vol:
    E76-A No:10
      Page(s):
    1863-1865

    We propose a third-order low-pass notch filter realized by a single operational amplifier and a minimum number of equal-valued capacitors. As a design example we realize a Chebyshev filter with a ripple of 0.5 dB and it is shown that the experiment result is very good.

  • Second Harmonic Generation in Poled Polymer Films Doped with α-Cyano Unsaturated Carboxylic Acids

    Okihiro SUGIHARA  Yasuhiko HIRANO  Naomichi OKAMOTO  Yutaka TAKETANI  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:10
      Page(s):
    1523-1528

    Poled polymer films doped with novel nonlinear organic materials, α-cyano unsaturated carboxylic acid (α-CUCA) derivatives, are prepared. Linear and second-order nonlinear optical properties are investigated. It is found that as the value of hyperpolarizability of the derivatives increases, the second-order nonlinear susceptibility of the film increases. Cerenkov-type second harmonic generation (SHG) of Nd: YAG laser is realized in a poled polymer waveguide doped with the α-CUCA material with a slight absorption at doubled wavelength.

  • Fundamental Properties of Pushdown Tree Transducer (PDTT)--A Top-Down Case--

    Katsunori YAMASAKI  

     
    PAPER-Automaton, Language and Theory of Computing

      Vol:
    E76-D No:10
      Page(s):
    1234-1242

    String grammars (languages) have been extensively studied from 60's. On the other hand, the transformational grammar, proposed by Chomsky, contains the transformation from the set of derivation trees of context-free language to the surface set. And the grammar regarded a tree as an input sentence to some transducer. After that from latter half of 60's, the studies of acceptor, transducer, and so on, whose input is a tree, have been done extensively. In this paper we propose, as a model, a new type of transducer which translates trees into trees and investigate its fundamental properties. The model proposed here is the pushdown tree transducer (for shortly PDTT) that is an extension of the finite state tree transducer discussed by J. W. Thacher, W. C. Rounds, J. Engelfriet, and so on. The main subjects discussed here (we consider only top-down case (t-PDTT)), are as follows: (1) final state t-PDTT translation is equivalent to empty stack t-PDTT translation and vice versa, (2) for any t-PDTT, a single state t-PDTT which is equivalent to it always exists, (3) as a standard form the symmetric stack form t-PDTT is proposed and based on this, it is shown that any single state t-PDTT can be always converted into a linear stack t-PDTT, and so on.

  • A Note on One-Way Multicounter Machines and Cooperating Systems of One-Way Finite Automata

    Yue WANG  Katsushi INOUE  Itsuo TAKANAMI  

     
    LETTER-Automaton, Language and Theory of Computing

      Vol:
    E76-D No:10
      Page(s):
    1302-1306

    For each two positive integers r, s, let [1DCM(r)-Time(ns)] ([1NCM(r)-Time(ns)]) and [1DCM(r)-Space(ns)] ([1NCM(r)-Space(ns)]) be the classes of languages accepted in time ns and in space ns, respectively, by one-way deterministic (nondeterministic) r-counter machines. We show that for each X{D, N}, [1XCM(r)-Time(ns)][1XCM(r+1)-Time(ns)] and [1XCM(r)-Space(ns)][1XCM(r+1)-Space(ns)]. We also investigate the relationships between one-way multicounter machines and cooperating systems of one-way finite automata. In particular, it is shown that one-way (one-) counter machines and cooperating systems of two one-way finite automata are equivalent in accepting power.

  • Analysis of Characteristics of a Cherenkov Laser for an Electromagnetic Wave with Continuous Frequency Spectrum

    Katsuhiko HORINOUCHI  Masahiro SATA  Toshiyuki SHIOZAWA  

     
    PAPER-Transient Field

      Vol:
    E76-C No:10
      Page(s):
    1481-1486

    The characteristics of an open-boundary Cherenkov laser for an electromagnetic wave with a continuous frequency spectrum are numerically analyzed. A given power spectral density for the input wave is found to get concentrated around the frequency where the spatial growth rate is maximum, as it grows along the electron beam. In addition, the frequency for the maximum growth rate is found to shift gradually to higher values. Furthermore, by gradually increasing the permittivity of the dielectric waveguide along it, we can always get the maximum power spectral density at the frequency where the spatial growth rate initially becomes maximum at the input.

  • Analysis of Wave Guidance by Surface-Relief Grating Waveguides for Oblique Propagation

    Keiji MATSUMOTO  Katsu ROKUSHIMA  Jiro YAMAKITA  

     
    PAPER-Optical Device

      Vol:
    E76-C No:10
      Page(s):
    1498-1504

    An analysis of wave guidance by surface-relief grating waveguides is presented for the case of oblique propagation. This analysis is based on the first-order differential equations expressing the coupling of the space harmonics and an improved differential method is applied to solve the equations in the grating region with arbitrary profile. The propagation constants are calculated for isotropic grating waveguids with sinusoidal profile and the calculated results indicate that the accurate solutions can be obtained by increasing the number of expansion terms and the number of segments. Moreover, this method is extended to the case of the analysis of obliquely propagating waves and it is shown that peculiar leaky waves and stop bands appear owing to the coupling between TE and TM waves.

  • The Optimum Approximation of Muliti-Dimensional Signals Using Parallel Wavelet Filter Banks

    Takuro KIDA  

     
    PAPER-Parallel/Multidimensional Signal Processing

      Vol:
    E76-A No:10
      Page(s):
    1830-1848

    A systematic theory of the optimum sub-band interpolation using parallel wavelet filter banks presented with respect to a family of n-dimensional signals which are not necessarily band-limited. It is assumed that the Fourier spectrums of these signals have weighted L2 norms smaller than a given positive number. In this paper, we establish a theory that the presented optimum interpolation functions satisfy the generalized discrete orthogonality and minimize the wide variety of measures of error simultaneously. In the following discussion, we assume initially that the corresponding approximation formula uses the infinite number of interpolation functions having limited supports and functional forms different from each other. However, it should be noted that the resultant optimum interpolation functions can be realized as the parallel shift of the finite number of space-limited functions. Some remarks to the problem of distinction of images is presented relating to the generalized discrete orthogonality and the reciprocal property for the proposed approximation.

  • Single-Unit Underground Radar Utilizing Zero-Crossed Synthetic Aperture

    Yuji NAGASHIMA  Hirotaka YOSHIDA  Jun-ichi MASUDA  Ryosuke ARIOKA  

     
    PAPER-Subsurface Radar

      Vol:
    E76-B No:10
      Page(s):
    1290-1296

    This paper describes a new single-unit underground radar for detecting underground buried pipes. The pipe depth can be calculated from the hyperbolic shape in the cross-sectional image of radar echoes. The edge contour of the image is extracted, and the buried depth is judged from the similarity between the extracted hyperbolic curve and the theoretical curve. A suitable amplification rate is estimated by choosing the best image from numerous cross-sectional images formed during one antenna movement repeated at different amplification rates. The best image has few pixels corresponding to weak and saturated signals. The new radar is very compact, so it can be operated by one person. Objects buried up to 2.0m deep can be detected.

  • COACH:A Computer Aided Design Tool for Computer Architects

    Hiroki AKABOSHI  Hiroto YASUURA  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1760-1769

    A modern architect can not design high performance computer architecture without thinking all factors of performance from hardware level (logic/layout design) to system level (application programs, operating systems, and compilers). For computer architecture design, there are few practical CAD tools, which support design activities of the architect. In this paper, we propose a CAD tool, called COACH, for computer architecture design. COACH supports architecture design from hardware level to system level. To make a high-performance general purpose computer system, the architect evaluates system performance as well as hardware level performance. To evaluate hardware level performance accurately, logic/layout synthesis tools and simulator are used for evaluation. Logic/layout synthesis tools translate the architecture design into logic circuits and layout pattern and simulator is used to get accurate information on hardware level performance which consists of clock frequency, the number of transistors, power consumption, and so on. To evaluate system level performance, a compiler generator is introducd. The compiler generator generates a compiler of a programming language from the desripition of architecture design. The designed architecture is simulated in the behavior level with programs compiled by the compiler, and the architect can get information on system level performance which consists of program execution steps, etc. From both hardware level performance and system level performance, the architect can evaluate and revise his/her architecture, considering the architecture from hardware level to system level. In this paper, we propose a new design methodology which uses () logic/layout synthesis tools and simulators as tools for architecture design and () a compiler generator for system level evaluation. COACH, a CAD system based on the methodology, is discussed and a prototype of COACH is implemented. Using the design methodology, two processors are designed. The result of the designs shows that the proposed design methodology are effective in architecture design.

  • Test Generation for Sequential Circits Using Partitioned Image Computation

    Hoyong CHOI  Hironori MAEDA  Takashi KOHARA  Nagisa ISHIURA  Isao SHIRAKAWA  Akira MOTOHARA  

     
    LETTER

      Vol:
    E76-A No:10
      Page(s):
    1770-1774

    This letter presents an algorithm named SPM which generates test patterns for single stuck-at faults in synchronous sequential circuits based on a product machine traversal method. The new idea presented in this letter is partitioned image computation combined with a mixed breadth-first/depth-first search. Image computation is carried out in partitioned manner by substituting constant logical values to some input variables. This brings about significant reduction in storage requirement during image computation. A test generator based on SPM achieved 100% fault efficiency for the ISCAS'89 benchmark circuits with not more than 32 flip-flops.

  • A Note on Leaf Reduction Theorem for Reversal- and Leaf-Bounded Alternating Turing Machines

    Hiroaki YAMAMOTO  Takashi MIYAZAKI  

     
    LETTER-Automaton, Language and Theory of Computing

      Vol:
    E76-D No:10
      Page(s):
    1298-1301

    There have been several studies related to a reduction of the amount of computational resources used by Turing machines. As consequences, linear speed-up theorem" tape compression theorem", and reversal reduction theorem" have been obtained. In this paper, we consider reversal- and leaf-bounded alternating Turing machines, and then show that the number of leaves can be reduced by a constant factor without increasing the number of reversals. Thus our results say that a constant factor on the leaf complexity does not affect the power of reversal- and leaf-bounded alternating Turing machines

  • Reconfigurable Machine and its Application to Logic Simulation

    Nasahiro TOMITA  Naoaki SUGANUMA  Kotaro HIRANO  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1705-1712

    This paper presents a Reconfigurable Machine (RM). capable of efficiently implementing a wide range of computationlly complex algorithms. Its highly flexble architecture combining FPGA's with RAM's supports a wide range of applications. Since its "gate-level programmability" allows us to implement various kinds of parallel processing techniques, RM provides a perfomance comparable to exising "special-purpose" engines. The in-circuit reconfiguration capability of FPGA's is used to reload several kinds of configuration data during power on. Thus, RM behaves itself like a general-purpose computer applicable to various kinds of applications by loading programs. A Reconfigurable Machine-(RM-) has been built as the first prototype incorporating five FPGA's and four SRAM memory banks. RM- has been applied to a multiple-delay Logic Simulator (LSIM). Employing pipeline architecture, LSIM has achieved a perfomance of l million gate events per second at 4MHz. The concept of RM is the best solution to the trade-offs between general-purpose machines and special-purpose ones. RM will be a hardware platform accelerating a wide range of applications, also offering an interesting problem in high-level synthesis.

  • Scattering of Electromagnetic Waves by a Dielectric Grating with Planar Slanted-Fringe

    Tsuneki YAMASAKI  Hirotaka TANAKA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E76-C No:10
      Page(s):
    1435-1442

    The scattering of electromagnetic waves by a dielectric grating with planar slanted-fringe is analyzed using the improved Fourier series expansion method. In the analysis, the slanted grating region is divided into layers to make an assembly of stratified thin modulated index layers. This method can be applied to a wide range of periodic structures and is especially effective in the case of planar slanted grating, because the electromagnetic fields in the each layer can easily be obtained by shifting the solution in the first layer. In this paper, the numerical results are given for grating with rectangular and sinusoidal dielectric profiles, and for TM and TE cases of arbitrary incident angle. The diffraction efficiencies obtained by the presented method are compared with the results by the coupled-wave approach; the influences of the slant angle on the diffraction efficiencies at the Wood's anomaly and at the coupling resonance frequency are also discussed.

18021-18040hit(18690hit)