The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BAN(1638hit)

161-180hit(1638hit)

  • Radio Propagation Prediction Method Using Point Cloud Data Based on Hybrid of Ray-Tracing and Effective Roughness Model in Urban Environments

    Minoru INOMATA  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Motoharu SASAKI  Yasushi TAKATORI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/10
      Vol:
    E102-B No:1
      Page(s):
    51-62

    This paper proposes a radio propagation prediction method that uses point cloud data based on a hybrid of the ray-tracing (RT) method and an effective roughness (ER) model in urban environments for the fifth generation mobile communications system using high frequency bands. The proposed prediction method incorporates propagation characteristics that consider diffuse scattering from surface irregularities. The validity of the proposed method is confirmed by comparisons of measurement and prediction results gained from the proposed method and a conventional RT method based on power delay and angular profiles. From predictions based on the power delay and angular profiles, we find that the proposed method, assuming the roughness of σh=1mm, accurately predicts the propagation characteristics in the 20GHz band for urban line-of-sight environments. The prediction error for the delay spread is 2.1ns to 9.7ns in an urban environment.

  • A Fundamental Study on Vehicle Detection in Flooded Urban Area Using Quad-Polarimetric SAR Data

    Takanori ISHIKURO  Ryoichi SATO  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    38-45

    In this paper, we propose a simple algorithm for detecting a vehicle trapped in flooded urban area by using quad-polarimetric SAR data. The four-component scattering power decomposition and phase difference of HH-VV co-pol ratio are effectively used in the proposed algorithm. Here we carry out polarimetric scattering measurement for a scaled vehicle model surrounded by two buildings model in an anechoic chamber, to acquire the quad-polarimetric SAR data. It is confirmed from the results of the image analysis for the measured SAR data that the proposed algorithm for vehicle detection works well even under severe environment where the vehicle is set in the shadow of the building and/or the alignment of the vehicle or the buildings is obliquely oriented to direction of the radar line of sight.

  • A 0.4-1.2GHz Reconfigurable CMOS Power Amplifier for 802.11ah/af Applications

    Jaeyong KO  Sangwook NAM  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:1
      Page(s):
    91-94

    A reconfigurable broadband linear power amplifier (PA) for long-range WLAN applications fabricated in a 180nm RF CMOS process is presented here. The proposed reconfigurable in/output matching network provides the PA with broadband capability at the two center frequencies of 0.5GHz and 0.85GHz. The output matching network is realized by a switchable transformer which shows maximum peak passive efficiencies of 65.03% and 73.45% at 0.45GHz and 0.725GHz, respectively. With continuous wave sources, a 1-dB bandwidth (BW1-dB) according to saturated output power is 0.4-1.2GHz, where it shows a minimum output power with a power added efficiency (PAE) of 25.62dBm at 19.65%. Using an adaptive power cell configuration at the common gate transistor, the measured PA under LTE 16-QAM 20MHz (40MHz) signals shows an average output power with a PAE exceeding 20.22 (20.15) dBm with 7.42 (7.35)% at an ACLRE-UTRA of -30dBc, within the BW1-dB.

  • An 11.37-to-14.8 GHz Low Phase Noise CMOS VCO in Cooperation with a Fast AFC Unit Achieving -195.3 dBc/Hz FoMT

    Youming ZHANG  Kaiye BAO  Xusheng TANG  Fengyi HUANG  Nan JIANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E101-C No:12
      Page(s):
    963-966

    This paper describes a broadband low phase noise VCO implemented in 0.13 µm CMOS process. A 1-bit switched varactor and a 4-bit capacitor array are adopted in cooperation with the automatic frequency calibration (AFC) circuit to lower the VCO tuning gain (KVCO), with a measured AFC time of 6 µs. Several noise reduction techniques are exploited to minimize the phase noise of the VCO. Measurement results show the VCO generates a high frequency range from 11.37 GHz to 14.8 GHz with a KVCO of less than 270 MHz/V. The prototype exhibits a phase noise of -114.6 dBc/Hz @ 1 MHz at 14.67 GHz carrier frequency and draws 10.5 mA current from a 1.2 V supply. The achieved figure-of-merits (FoM=-186.9dBc/Hz, FoMT=-195.3dBc/Hz) favorably compares with the state-of-the-art.

  • A Line Coding for Digital RF Transmitter Using a 1-Bit Band-Pass Delta-Sigma Modulator

    Takashi MAEHATA  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/16
      Vol:
    E101-B No:11
      Page(s):
    2313-2319

    The 1-bit digital radio frequency (DRF) transmitter using a band-pass delta-sigma modulator (BP-DSM) can output a radio frequency (RF) signal carrying a binary data stream with a constant data rate regardless of the carrier frequency, which makes it possible to transmit RF signals over digital optical links with a constant bit rate. However, the optical link requires a line coding, such as 8B10B or 64B66B, to constrain runlength and disparity, and the line coding corrupts the DRF power spectrum owing to additional or encoded data. This paper proposes a new line coding for BP-DSM, which is able to control the runlength and the disparity of the 1-bit data stream by adding a notch filter to the BP-DSM that suppresses the low frequency components. The notch filter stimulates the data change and balances the direct current (DC) components. It is demonstrated that the proposed line coding shortens the runlength from 50 bits to less than 8 bits and reduces the disparity from several thousand bits to 5 bits when the 1-bit DRF transmitter outputs an LTE signal with 5 MHz bandwidth, when using carrier frequencies from 0.5GHz to 2GHz and an output power variation of 60dB.

  • Characterization of Broadband Mobile Communication Channel in 200MHz Band Based on Saleh-Valenzuela Model

    Hiroki OHARA  Hirokazu SAWADA  Masayuki OODO  Fumihide KOJIMA  Hiroshi HARADA  Kentaro SAITO  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/05/11
      Vol:
    E101-B No:11
      Page(s):
    2277-2288

    Digitization of analog terrestrial TV broadcasting has recently been accelerated in many countries, and the effective utilization of vacant frequencies has also been investigated for new systems in each country. In Japan, a portion of vacant frequencies in the VHF-high band was allocated to the public broadband mobile communication (PBB) system. To evaluate the current PBB system and develop future broadband communication systems in this band, it is important to analyze the propagation channel more accurately. In this study, we characterize the propagation channel for 200MHz band broadband mobile communication systems, using measured channel impulse responses (CIRs). In the characterization process, the Saleh-Valenzuela (S-V) model is utilized to extract channel model parameters statistically. When evaluating the fluctuation of path power gain, we also propose to model the fluctuation of path power gain using the generalized extreme value distribution instead of the conventional log-normal distribution. The extracted CIR model parameters are validated by cumulative distribution function of root-means-square delay spread and maximum excess delay, comparing simulation result to measurement result. From the extracted CIR model parameters, we clarified the characteristics of 200MHz band broadband mobile communication systems in non-line-of-sight environments based on S-V model with the proposed channel model.

  • High Speed and Narrow-Bandpass Liquid Crystal Filter for Real-Time Multi Spectral Imaging Systems

    Kohei TERASHIMA  Kazuhiro WAKO  Yasuyuki FUJIHARA  Yusuke AOYAGI  Maasa MURATA  Yosei SHIBATA  Shigetoshi SUGAWA  Takahiro ISHINABE  Rihito KURODA  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    897-900

    We have developed the high speed bandpass liquid crystal filter with narrow full width at half maximum (FWHM) of 5nm for real-time multi spectral imaging systems. We have successfully achieved short wavelength-switching time of 30ms by the optimization of phase retardation of thin liquid crystal cells.

  • 4.5-/4.9-GHz-Band Selective High-Efficiency GaN HEMT Power Amplifier by Characteristic Impedance Switching

    Kazuki MASHIMO  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    751-758

    A 4.5-/4.9-GHz band-selective GaN HEMT high-efficiency power amplifier has been designed and evaluated for next-generation wireless communication systems. An optimum termination impedance for each high-efficiency operation band was changed by using PIN diodes inserted into a harmonic treatment circuit at the output side. In order to minimize the influence of the insertion loss of the PIN diodes, an additional line is arranged in parallel with the open-ended stub used for second harmonic treatment, and the line and stub are connected with the PIN diodes to change the effective characteristic impedance. The fabricated GaN HEMT amplifier achieved a maximum power-added efficiency of 57% and 66% and a maximum drain efficiency of 62% and 70% at 4.6 and 5.0GHz, respectively, with a saturated output power of 38dBm, for each switched condition.

  • Underground Infrastructure Management System using Internet of Things Wireless Transmission Technology Open Access

    Yo YAMAGUCHI  Yosuke FUJINO  Hajime KATSUDA  Marina NAKANO  Hiroyuki FUKUMOTO  Shigeru TERUHI  Kazunori AKABANE  Shuichi YOSHINO  

     
    INVITED PAPER

      Vol:
    E101-C No:10
      Page(s):
    727-733

    This paper presents a water leakage monitoring system that gathers acoustic data of water pipes using wireless communication technology and identifies the sound of water leakage using machine leaning technology. To collect acoustic data effectively, this system combines three types of data-collection methods: drive-by, walk-by, and static. To design this system, it is important to ascertain the wireless communication distance that can be achieved with sensors installed in a basement. This paper also reports on radio propagation from underground manholes made from reinforced concrete and resin concrete in residential and commercial areas using the 920 MHz band. We reveal that it is possible to design a practical system that uses radio communication from underground sensors.

  • Design of Dual-Band SHF BPF with Lower Band Reconfigurability and Direct Parallel-Connected Configuration

    Yuki KADA  Yasushi YAMAO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    775-783

    For more flexible and efficient use of radio spectrum, reconfigurable RF devices have important roles in the future wireless systems. In 5G mobile communications, concurrent multi-band operation using new SHF bands is considered. This paper presents a new configuration of dual-band SHF BPF consisting of a low SHF three-bit reconfigurable BPF and a high SHF BPF. The proposed dual-band BPF employs direct parallel connection without additional divider/combiner to reduce circuit elements and simplify the BPF. In order to obtain a good isolation between two passbands while achieving a wide center frequency range in the low SHF BPF, input/output impedances and external Qs of BPFs are analyzed and feedbacked to the design. A high SHF BPF design method with tapped transmission line resonators and lumped-element coupling is also presented to make the BPF compact. Two types of prototypes; all inductor-coupled dual-band BPF and C-L-C coupled dual-band BPF were designed and fabricated. Both prototypes have low SHF reconfigurable center frequency range from 3.5 to 5 GHz as well as high SHF center frequency of 8.5 GHz with insertion loss below 2.0 dB.

  • Application of Novel Metallic PhC Resonators in Theoretical Design of THz BPFs

    Chun-Ping CHEN  Kazuki KANAZAWA  Zejun ZHANG  Tetsuo ANADA  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    655-659

    This paper presents a theoretical design of novel THz bandpass filters composed of M-PhC (metallic-photonic-crystal) point-defect-cavities (PDCs) with a centrally-loaded-rod. After a brief review of the properties of the recently-proposed M-PhC PDCs, two inline-type bandpass filters are synthesized in terms of the coupling matrix theory. The FDTD simulation results of the synthesized filters are in good agreement with the theoretical ones, which confirms the validity of the proposed filters' structures and the design scheme.

  • Path Loss Model Considering Blockage Effects of Traffic Signs Up to 40GHz in Urban Microcell Environments

    Motoharu SASAKI  Minoru INOMATA  Wataru YAMADA  Naoki KITA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/02/21
      Vol:
    E101-B No:8
      Page(s):
    1891-1902

    This paper presents the characteristics of path loss produced by traffic sign blockage. Multi frequency bands including high frequency bands up to 40 GHz are analyzed on the basis of measurement results in urban microcell environments. It is shown that the measured path loss increases compared to free space path loss even on a straight line-of-sight road, and that the excess attenuation is caused by the blockage effects of traffic signs. It is also shown that the measurement area affected by the blockage becomes small as frequency increases. The blocking object occupies the same area for all frequencies, but it takes up a larger portion of the Fresnel Zone as frequency increases. Therefore, if blockage occurs, the excess loss in high frequency bands becomes larger than in low frequency bands. In addition, the validity of two blockage path loss models is verified on the basis of measurement results. The first is the 3GPP blockage model and the second is the proposed blockage model, which is an expanded version of the basic diffraction model in ITU-R P.526. It is shown that these blockage models can predict the path loss increased by the traffic sign blockage and that their root mean square error can be improved compared to that of the 3GPP two slope model and a free space path loss model. The 3GPP blockage model is found to be more accurate for 26.4 and 37.1GHz, while the proposed model is more accurate for 0.8, 2.2, and 4.7GHz. The results show the blockage path loss due to traffic signs is clarified in a wide frequency range, and it is verified that the 3GPP blockage model and the proposed blockage model can accurately predict the blockage path loss.

  • Multiband Antenna Based on Meta-Structured Transmission Line for RF Harvesting Application

    Kwi Seob UM  Jae-Gon LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/12/25
      Vol:
    E101-B No:7
      Page(s):
    1701-1707

    A penta-band antenna based on the mu-negative transmission line is presented for radio frequency (RF) energy harvesting application. The antenna utilizes five radiation modes; two quarter wavelength resonances, three quarter wavelength resonance, zeroth order resonance, and first order resonance. The parasitic radiating strip antenna generates quarter wavelength resonance radiation. The dual band antenna based on two unit cell mu-negative (MNG) transmission line gives birth to the zeroth order resonance (ZOR) mode and the first order resonance (FOR) mode. The parasitic radiating strip and dual band antenna based on two unit mu-negative (MNG) transmission line are magnetically coupled by a feed monopole with gap. This feed monopole, simultaneously, radiates at quarter and three quarter wavelength resonance frequency to cover the other bands. The multi-mode coupling mechanism of this penta-band antenna is well modeled by our derived equivalent circuit. The measured radiation efficiencies are more than 87% over the entire penta-band.

  • Optimizing Non-Uniform Bandwidth Reservation Based on Meter Table of Openflow

    Liaoruo HUANG  Qingguo SHEN  Zhangkai LUO  

     
    LETTER-Information Network

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1694-1698

    Bandwidth reservation is an important way to guarantee deterministic end-to-end service quality. However, with the traditional bandwidth reservation mechanism, the allocated bandwidth at each link is by default the same without considering the available resource of each link, which may lead to unbalanced resource utilization and limit the number of user connections that network can accommodate. In this paper, we propose a non-uniform bandwidth reservation method, which can further balance the resource utilization of network by optimizing the reserved bandwidth at each link according to its link load. Furthermore, to implement the proposed method, we devise a flexible and automatic bandwidth reservation mechanism based on meter table of Openflow. Through simulations, it is showed that our method can achieve better load balancing performance and make network accommodate more user connections comparing with the traditional methods in most application scenarios.

  • Asymmetrical Waveform Compensation for Concurrent Dual-Band 1-bit Band-Pass Delta-Sigma Modulator with a Quasi-Elliptic Filter

    Takashi MAEHATA  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2017/12/13
      Vol:
    E101-B No:6
      Page(s):
    1352-1358

    The 1-bit band-pass delta-sigma modulator (BP-DSM) achieves high resolution if it uses an oversampling technique. This method can generate concurrent dual-band RF signals from a digitally modulated signal using a 1-bit digital pulse train. It was previously reported that the adjacent channel leakage ratio (ACLR) deteriorates owing to the asymmetrical waveform created by the pulse transition mismatch error of the rising and falling waveforms in the time domain and that the ACLR can be improved by distortion compensation. However, the reported distortion compensation method can only be performed for single-band transmission, and it fails to support multi-band transmission because the asymmetrical waveform compensated signal extends over a wide frequency range and is itself a harmful distortion outside the target band. Unfortunately, the increase of out-of-band power causes the BP-DSM unstable. We therefore propose a distortion compensator for a concurrent dual-band 1-bit BP-DSM that consists of a noise transfer function with a quasi-elliptic filter that can control the out-of-band gain frequency response against out-of-band oscillation. We demonstrate that dual-band LTE signals, each with 40MHz (2×20MHz) bandwidth, at 1.5 and 3.0GHz, can be compensated concurrently for spurious distortion under various combinations of rising and falling times and ACLR of up to 48dB, each with 120MHz bandwidth, including the double sided adjacent channels and next adjacent channels, is achieved.

  • A Simple Formula for Noncoherent Capacity in Highly Underspread WSSUS Channel

    Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1262-1269

    Channel capacity is a useful numerical index not only for grasping the upper limit of the transmission bit rate but also for comparing the abilities of various digital transmission schemes commonly used in radio-wave propagation environments because the channel capacity does not depend on specific communication methods such as modulation/demodulation schemes or error correction schemes. In this paper, modeling of the noncoherent capacity in a highly underspread WSSUS channel is investigated using a new approach. Unlike the conventional method, namely, the information theoretic method, a very straightforward formula can be obtained in a statistical manner. Although the modeling in the present study is carried out using a somewhat less rigorous approach, the result obtained is useful for roughly understanding the channel capacity in doubly selective fading environments. We clarify that the radio wave propagation parameter of the spread factor, which is the product of the Doppler spread and the delay spread, can be related quantitatively to the effective maximum signal-to-interference ratio by a simple formula. Using this model, the physical limit of wireless digital transmission is discussed from a radio wave propagation perspective.

  • Analysis of the Cost and Energy Efficiency of Future Hybrid and Heterogeneous Optical Networks

    Filippos BALASIS  Sugang XU  Yoshiaki TANAKA  

     
    PAPER-Network

      Pubricized:
    2017/11/10
      Vol:
    E101-B No:5
      Page(s):
    1222-1232

    Orthogonal frequency division multiplexing (OFDM) promises to provide the necessary boost in the core networks' capacity along with the required flexibility in order to cope with the Internet's growing heterogeneous traffic. At the same time, wavelength division multiplexing (WDM) technology remains a cost-effective and reliable solution especially for long-haul transmission. Due to the higher implementation cost of optical OFDM transmission technology, it is expected that OFDM-based bandwidth variable transponders (BVT) will co-exist with conventional WDM ones. In this paper, we provide an integer linear programming (ILP) formulation that minimizes the cost and power consumption of such hybrid architecture and then a comparison is made with a pure OFDM-based elastic optical network (EON) and a mixed line rate (MLR) WDM optical network in order to evaluate their cost and energy efficiency.

  • Low Voltage CMOS Current Mode Reference Circuit without Operational Amplifiers

    Kenya KONDO  Koichi TANNO  Hiroki TAMURA  Shigetoshi NAKATAKE  

     
    PAPER-Analog Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    748-754

    In this paper, we propose the novel low voltage CMOS current mode reference circuit. It reduces the minimum supply voltage by consisting the subthreshold two stage operational amplifier (OPAMP) which is regarded as the combination of the proportional to absolute temperature (PTAT) and the complementary to absolute temperature (CTAT) current generators. It makes possible to implement without extra OPAMP. This proposed circuit has been designed and evaluated by SPICE simulation using TSMC 65nm CMOS process with 3.3V (2.5V over-drive) transistor option. From simulation results, the line sensitivity is as good as 0.196%/V under the condition that the range of supply voltage (VDD) is wide as 0.6V to 3.0V. The temperature coefficient is 71ppm/ under the condition that the temperature range is from -40 to 125 and VDD=0.6V. The power supply rejection ratio (PSRR) is -47.7dB when VDD=0.6V and the noise frequency is 100Hz. According to comparing the proposed circuit with prior current mode circuits, we could confirm the performance of the proposed circuit is better than that of prior circuits.

  • Operator-Based Reset Control for Nonlinear System with Unknown Disturbance

    Mengyang LI  Mingcong DENG  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:5
      Page(s):
    755-762

    In this paper, operator-based reset control for a class of nonlinear systems with unknown bounded disturbance is considered using right coprime factorization approach. In detail, firstly, for dealing with the unknown bounded disturbance of the nonlinear systems, operator-based reset control framework is proposed based on right coprime factorization. By the proposed framework, robust stability of the nonlinear systems with unknown bounded disturbance is guaranteed by using the proposed reset controller. Secondly, under the reset control framework, an optimal design scheme is discussed for minimizing the error norm based on the proposed operator-based reset controller. Finally, for conforming effectiveness of the proposed design scheme, a simulation example is given.

  • Naive Bayes Classifier Based Partitioner for MapReduce

    Lei CHEN  Wei LU  Ergude BAO  Liqiang WANG  Weiwei XING  Yuanyuan CAI  

     
    PAPER-Graphs and Networks

      Vol:
    E101-A No:5
      Page(s):
    778-786

    MapReduce is an effective framework for processing large datasets in parallel over a cluster. Data locality and data skew on the reduce side are two essential issues in MapReduce. Improving data locality can decrease network traffic by moving reduce tasks to the nodes where the reducer input data is located. Data skew will lead to load imbalance among reducer nodes. Partitioning is an important feature of MapReduce because it determines the reducer nodes to which map output results will be sent. Therefore, an effective partitioner can improve MapReduce performance by increasing data locality and decreasing data skew on the reduce side. Previous studies considering both essential issues can be divided into two categories: those that preferentially improve data locality, such as LEEN, and those that preferentially improve load balance, such as CLP. However, all these studies ignore the fact that for different types of jobs, the priority of data locality and data skew on the reduce side may produce different effects on the execution time. In this paper, we propose a naive Bayes classifier based partitioner, namely, BAPM, which achieves better performance because it can automatically choose the proper algorithm (LEEN or CLP) by leveraging the naive Bayes classifier, i.e., considering job type and bandwidth as classification attributes. Our experiments are performed in a Hadoop cluster, and the results show that BAPM boosts the computing performance of MapReduce. The selection accuracy reaches 95.15%. Further, compared with other popular algorithms, under specific bandwidths, the improvement BAPM achieved is up to 31.31%.

161-180hit(1638hit)