The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

3081-3100hit(8214hit)

  • Theoretical and Experimental Study of the Frequency Response of the Nonlinear Polarization Rotation in a Bulk Semiconductor Optical Amplifier

    Obed PEREZ-CORTES  Aaron ALBORES-MEJIA  Horacio SOTO-ORTIZ  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E94-C No:12
      Page(s):
    1872-1880

    To characterize and predict the dynamics of the nonlinear polarization rotation in SOAs, an experimental method based on the frequency response technique and a model based on the density matrix and effective index formalisms are presented. Both determine the angular displacement, at the Poincare Sphere, that produces the evolution of the polarization of the output signal.

  • Two-Stage Configurable Decoder Model for Domain Specific FEC Decoder Design

    Ittetsu TANIGUCHI  Ayataka KOBAYASHI  Keishi SAKANUSHI  Yoshinori TAKEUCHI  Masaharu IMAI  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E94-A No:12
      Page(s):
    2659-2668

    Forward error correction (FEC) is one of important and heavy tasks for wireless communication. Leading edge mobile embedded systems usually support not only one FEC standard, but multiple FEC standards in order to adapt to various wireless communication standards. In this paper, we propose two-stage configurable decoder model (2-Stage CDM) for multiple FEC standards for Viterbi and Turbo coding which have a variation under the constraint length, coding rate, etc. Proposed decoder model realizes a decoder instance which supports dedicated multiple FEC standards, and rapid design for domain specific decoder is realized. Proposed decoder model is configurable in two stages: at hardware generation time and at runtime, and designers can easily specify these specifications by various design parameters. Experimental results show proposed two-stage configurable decoder model supports various domain specific FEC decoder including existing decoder, and the decoder instances based on proposed 2-Stage CDM have sufficient throughput for each communication standard and reasonable area overhead compared with existing decoder.

  • A New Recovery Mechanism in Superscalar Microprocessors by Recovering Critical Misprediction

    Jiongyao YE  Yu WAN  Takahiro WATANABE  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E94-A No:12
      Page(s):
    2639-2648

    Current trends in modern out-of-order processors involve implementing deeper pipelines and a large instruction window to achieve high performance, which lead to the penalty of the branch misprediction recovery being a critical factor in overall processor performance. Multi path execution is proposed to reduce this penalty by executing both paths following a branch, simultaneously. However, there are some drawbacks in this mechanism, such as design complexity caused by processing both paths after a branch and performance degradation due to hardware resource competition between two paths. In this paper, we propose a new recovery mechanism, called Recovery Critical Misprediction (RCM), to reduce the penalty of branch misprediction recovery. The mechanism uses a small trace cache to save the decoded instructions from the alternative path following a branch. Then, during the subsequent predictions, the trace cache is accessed. If there is a hit, the processor forks the second path of this branch at the renamed stage so that the design complexity in the fetch stage and decode stage is alleviated. The most contribution of this paper is that our proposed mechanism employs critical path prediction to identify the branches that will be most harmful if mispredicted. Only the critical branch can save its alternative path into the trace cache, which not only increases the usefulness of a limited size of trace cache but also avoids the performance degradation caused by the forked non-critical branch. Experimental results employing SPECint 2000 benchmark show that a processor with our proposed RCM improves IPC value by 10.05% compared with a conventional processor.

  • Simulation-Based Tactics Generation for Warship Combat Using the Genetic Algorithm

    Yong-Jun YOU  Sung-Do CHI  Jae-Ick KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:12
      Page(s):
    2533-2536

    In most existing warships combat simulation system, the tactics of a warship is manipulated by human operators. For this reason, the simulation results are restricted due to the capabilities of human operators. To deal with this, we have employed the genetic algorithm for supporting the evolutionary simulation environment. In which, the tactical decision by human operators is replaced by the human model with a rule-based chromosome for representing tactics so that the population of simulations are created and hundreds of simulation runs are continued on the basis of the genetic algorithm without any human intervention until finding emergent tactics which shows the best performance throughout the simulation. Several simulation tests demonstrate the techniques.

  • Iterations of FB-MSDSD and Turbo Codes over the Correlated Flat Fading Channel

    Chien-Sheng CHEN  Ching-Chi LO  

     
    LETTER

      Vol:
    E94-A No:12
      Page(s):
    2780-2786

    Over a correlated flat fading channel, multiple-symbol differential detection can enhance the performance of coded differential phase shift keying (DPSK) systems but with exponential complexity. For iterative decoding schemes, the soft-input soft-output (SISO) multiple-symbol differential sphere decoding (MSDSD) can offer suboptimal performance and its complexity is quadratic with detection length. To further reduce the complexity, this paper proposes a Forward/Backward MSDSD (FB-MSDSD) for coded DPSK systems. The key idea is that the detection interval is split into two subintervals which are processed in the forward and backward directions respectively. Simulation results show that the proposed scheme has almost the same performance and lower complexity when compared with the SISO-MSDSD scheme with the same detection length.

  • Implementation of Stack Data Placement and Run Time Management Using a Scratch-Pad Memory for Energy Consumption Reduction of Embedded Applications

    Lovic GAUTHIER  Tohru ISHIHARA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E94-A No:12
      Page(s):
    2597-2608

    Memory accesses are a major cause of energy consumption for embedded systems. This paper presents the implementation of a fully software technique which places stack and static data into a scratch-pad memory (SPM) in order to reduce the energy consumed by the processor while accessing them. Since an SPM is usually too small to include all these data, some of them must be left into the external main memory (MM). Therefore, further energy reduction is achieved by moving some stack data between both memories at run time. The technique employs integer linear programming in order to find at compile time the optimal placement of static data and management of the stack and implements it by inserting stack operations inside the code. Experimental results show that with an SPM of only 1 KB, our technique is able to exploit it for reducing the energy consumption related to the static and stack data accesses by more than 90% for several applications and on an average by 57% compared to the case where these data are fully placed into the main memory.

  • Flicker Parameters Estimation in Old Film Sequences Containing Moving Objects

    Xiaoyong ZHANG  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:12
      Page(s):
    2836-2844

    The aim of this study is to improve the accuracy of flicker parameters estimation in old film sequences in which moving objects are present. Conventional methods tend to fail in flicker parameters estimation due to the effects of moving objects. Our proposed method firstly utilizes an adaptive Gaussian mixture model (GMM)-based method to detect the moving objects in the film sequences, and combines the detected results with the histogram-matched frames to generate reference frames for flicker parameters estimation. Then, on the basis of a linear flicker model, the proposed method uses an M-estimator with the reference frames to estimate the flicker parameters. Experimental results show that the proposed method can effectively improve the accuracy of flicker parameters estimation when the moving objects are present in the film sequences.

  • Performance Investigation on Cell Selection Schemes Associated with Downlink Inter-Cell Interference Coordination in Heterogeneous Networks for LTE-Advanced

    Yuya SAITO  Jaturong SANGIAMWONG  Nobuhiko MIKI  Satoshi NAGATA  Tetsushi ABE  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3304-3311

    In Long-Term Evolution (LTE)-Advanced, a heterogeneous network in which femtocells and picocells overlay macrocells is being extensively discussed in addition to traditional well-planned macrocell deployment to improve further the system throughput. In heterogeneous network deployment, cell selection as well as inter-cell interference coordination (ICIC) is very important to improve the system and cell-edge throughput. Therefore, this paper investigates three cell selection methods associated with ICIC in heterogeneous networks in the LTE-Advanced downlink: Signal-to-interference plus noise power ratio (SINR)-based cell selection, reference signal received power (RSRP)-based cell selection, and reference signal received quality (RSRQ)-based cell selection. The results of simulations (4 picocells and 25 sets of user equipment are uniformly located within 1 macrocell) that assume a full buffer model show that the downlink cell and cell-edge user throughput levels of RSRP-based cell selection are degraded by approximately 2% and 11% compared to those for SINR-based cell selection under the condition of maximizing the cell-edge user throughput due to the impairment of the interference level. Furthermore, it is shown that the downlink cell-edge user throughput of RSRQ-based cell selection is improved by approximately 5%, although overall cell throughput is degraded by approximately 6% compared to that for SINR-based cell selection under the condition of maximizing the cell-edge user throughput.

  • Performance Analysis of Clos-Network Packet Switch with Virtual Output Queues

    Eiji OKI  Nattapong KITSUWAN  Roberto ROJAS-CESSA  

     
    PAPER-Network System

      Vol:
    E94-B No:12
      Page(s):
    3437-3446

    A three-stage Clos-network switch with input queues is attractive for practical implementation of a large-capacity packet switch. A scheme that configures the first, second, and third stages in that sequence by performing iterative matchings based on random selections is called the staged random scheduling scheme. Despite the usefulness of such a switch, the literature provides no analytical formula that can accurately calculate its throughput. This paper develops a formula to calculate the throughput analysis of the staged random scheduling scheme for one and multiple iterations used in an input-queued Clos-network switch under uniform traffic. This formula can be used to verify simulation models for very large switches. The introduced derivation considers the processes of the selection scheme at each stage of the switch. The derived formula is used in numerical evaluations to show the throughput of large switch sizes. The results show that the staged random scheduling scheme with multiple iterations for a Clos-network switch with VOQs without internal expansion approaches 100% throughput under uniform traffic. Furthermore, evaluations of the derived formulas are used in a practical application to estimate the number of iterations required to achieve 99% throughput for a given switch size. In addition, the staged random scheduling scheme in an input-queued Clos-network switch is modeled and simulated to compare throughput estimations to those obtained with the derived formulas. The simulation results support the correctness of the derived formulas.

  • Performance of Interference Rejection Combining Receiver to Suppress Inter-Cell Interference in LTE-Advanced Downlink

    Yusuke OHWATARI  Nobuhiko MIKI  Takahiro ASAI  Tetsushi ABE  Hidekazu TAOKA  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3362-3369

    The interference rejection combining (IRC) receiver, which can suppress inter-cell interference, is effective in improving the cell-edge user throughput. The IRC receiver is typically based on the minimum mean square error (MMSE) criteria, which requires highly accurate channel estimation and covariance matrix estimation that includes the inter-cell interference. This paper investigates the gain from the IRC receiver in terms of the downlink user throughput performance in a multi-cell environment. In the evaluation, to assess the actual gain, the inter-cell interference signals including reference signals from the surrounding 56 cells are generated in the same way as the desired signals, and the channel propagation from all of the cells is explicitly taken into account considering pathloss, shadowing, and multipath fading. The results of simulations that assume the inter-site distance of 500 m, the spatial correlation at the transmitter and the receiver of 0.5, and the numbers of transmitter and receiver antennas of 2 and 2, respectively, show that the IRC receiver improves the cell-edge user throughput (defined as the 5% value in the cumulative distribution function) by approximately 15% compared to the simplified MMSE receiver that approximates the inter-cell interference as AWGN, at the cost of a drop in the average user throughput due to less accurate channel and covariance matrices. Furthermore, we consider dynamic switching between the IRC receiver and the simplified MMSE receiver according to the number of streams and modulation and coding scheme levels. The results show that with dynamic switching, both the cell-edge throughput and average user throughput are improved to the same level as that for the IRC receiver and the simplified MMSE receiver, respectively. Therefore, the best performance can be achieved by employing the dynamic switching in all throughput regions.

  • P3HT/n--Si Heterojunction Diodes and Photovoltaic Devices Investigated by I-V and C-V Measurements

    Naoki OYAMA  Sho KANEKO  Katsuaki MOMIYAMA  Fumihiko HIROSE  

     
    PAPER

      Vol:
    E94-C No:12
      Page(s):
    1838-1844

    Current density-voltage (J-V) and capacitance-voltage (C-V) characteristics of P3HT/n--silicon heterojunction diodes were investigated to clarify the carrier conduction mechanism at the organic/inorganic heterojunction. The J-V characteristics of the P3HT/n--Si junctions can be explained by a Schottky diode model with an interfacial layer. Diode parameters such as Schottky barrier height and ideality factor were estimated to be 0.78 eV and 3.2, respectively. The C-V analysis suggests that the depletion layer appears in the n--Si layer with a thickness of 1.2 µm from the junction with zero bias and the diffusion potential was estimated at 0.40 eV at the open-circuit condition. The present heterojunction allows a photovoltaic operation with power conversion efficiencies up to 0.38% with a simulated solar light exposure of 100 mW/cm2. The forward bias current was enhanced by coating the Si surface with a SiC layer, where the ideality factor was improved to be the level of 1.451.50.

  • On Improving the Reliability and Performance of the YAFFS Flash File System

    Seungjae BAEK  Heekwon PARK  Jongmoo CHOI  

     
    LETTER-Software System

      Vol:
    E94-D No:12
      Page(s):
    2528-2532

    In this paper, we propose three techniques to improve the performance of YAFFS (Yet Another Flash File System), while enhancing the reliability of the system. Specifically, we first propose to manage metadata and user data separately on segregated blocks. This modification not only leads to the reduction of the mount time but also reduces the garbage collection time. Second, we tailor the wear-leveling to the segregated metadata and user data blocks. That is, worn out blocks between the segregated blocks are swapped, which leads to more evenly worn out blocks increasing the lifetime of the system. Finally, we devise an analytic model to predict the expected garbage collection time. By accurately predicting the garbage collection time, the system can perform garbage collection at more opportune times when the user's perceived performance may not be negatively affected. Performance evaluation results based on real implementations show that our modifications enhance performance and reliability without incurring additional overheads. Specifically, the YAFFS with our proposed techniques outperforms the original YAFFS by six times in terms of mount speed and five times in terms of benchmark performance, while reducing the average erase count of blocks by 14%.

  • Localization Using a Mobile Beacon with Directional Antenna for Wireless Sensor Networks

    Yao-Hung WU  Wei-Mei CHEN  

     
    PAPER

      Vol:
    E94-D No:12
      Page(s):
    2370-2377

    Wireless sensor networks are comprised of several sensor nodes that communicate via wireless technology. Locating the sensor nodes is a fundamental problem in developing applications for wireless sensor networks. In this paper, we introduce a distributed localization scheme, called the Rectangle Overlapping Approach (ROA), using a mobile beacon with GPS and a directional antenna. The node locations are computed by performing simple operations that rely on the rotation angle and position of the mobile beacon. Simulation results show that the proposed scheme is very efficient and that the node positions can be determined accurately when the beacon follows a random waypoint movement model.

  • Dynamic Fractional Base Station Cooperation Using Shared Distributed Remote Radio Units for Advanced Cellular Networks

    Naoki KUSASHIMA  Ian Dexter GARCIA  Kei SAKAGUCHI  Kiyomichi ARAKI  Shoji KANEKO  Yoji KISHI  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3259-3271

    Traditional cellular networks suffer the so-called “cell-edge problem” in which the user throughput is deteriorated because of pathloss and inter-cell (co-channel) interference. Recently, Base Station Cooperation (BSC) was proposed as a solution to the cell-edge problem by alleviating the interference and improving diversity and multiplexing gains at the cell-edge. However, it has minimal impact on cell-inner users and increases the complexity of the network. Moreover, static clustering, which fixes the cooperating cells, suffers from inter-cluster interference at the cluster-edge. In this paper, dynamic fractional cooperation is proposed to realize dynamic clustering in a shared RRU network. In the proposed algorithm, base station cooperation is performed dynamically at cell edges for throughput improvement of users located in these areas. To realize such base station cooperation in large scale cellular networks, coordinated scheduling and distributed dynamic cooperation are introduced. The introduction of coordinated scheduling in BSC multi-user MIMO not only maximizes the performance of BSC for cell-edge users but also reduces computational complexity by performing simple single-cell MIMO for cell-inner users. Furthermore, the proposed dynamic clustering employing shared RRU network realizes efficient transmission at all cell edges by forming cooperative cells dynamically with minimal network complexity. Owing to the combinations of the proposed algorithms, dynamic fractional cooperation achieves high network performance at all areas in the cellular network. Simulation results show that the cell-average and the 5% cell-edge user throughput can be significantly increased in practical cellular network scenarios.

  • 7T SRAM Enabling Low-Energy Instantaneous Block Copy and Its Application to Transactional Memory

    Shunsuke OKUMURA  Yuki KAGIYAMA  Yohei NAKATA  Shusuke YOSHIMOTO  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-Circuit Design

      Vol:
    E94-A No:12
      Page(s):
    2693-2700

    This paper proposes 7T SRAM which realizes block-level simultaneous copying feature. The proposed SRAM can be used for data transfer between local memories such as checkpoint data storage and transactional memory. The 1-Mb SRAM is comprised of 32-kb blocks, in which 16-kb data can be copied in 33.3 ns at 1.2 V. The proposed scheme reduces energy consumption in copying by 92.7% compared to the conventional read-modify-write manner. By applying the proposed scheme to transactional memory, the number of write back cycles is possibly reduced by 98.7% compared with the conventional memory system.

  • Characterization of Vertical Alignment Film by X-Ray Reflectivity

    Ichiro HIROSAWA  Tomoyuki KOGANEZAWA  Hidenori ISHII  

     
    PAPER

      Vol:
    E94-C No:11
      Page(s):
    1755-1759

    Depth profile of mass density of vertical alignment film was investigated by X-ray reflectivity, in order to characterize side chains at film surface for vertical alignment of liquid crystals. Existence thin and low density top layer at surface of polyimide film, which was considered to be side chains, was clearly detected. Furthermore, existence of high density layer just below side chain layer was also found, and it is suggested that backbone chain ordering at film surface. Effect of rubbing on VA film was not detected. However, density growth by annealing just below side chain layer of rubbed VA film suggests more ordered backbone chain alignment induced by rubbing.

  • Effects of Multiple Antennas on Outage Performance of Decode-and-Forward Cooperative Networks with Relay Selection

    Wooju LEE  Dongweon YOON  Zhengyuan XU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3155-3159

    In this paper, we consider multiple source and destination antennas based on relay selection scheme to improve the end-to-end outage performance for decode-and-forward cooperative networks. We derive an exact closed-form expression of the outage probability for the proposed system over a Rayleigh fading channel and describe the diversity-multiplexing tradeoff of the system. We then analyze the effects of the number of source and destination antennas on the outage probabilities and diversity-multiplexing tradeoffs.

  • Improvement of Display Performance for PSVA-LCD Based on Novel RM Monomer with Short Alkyl Spacer Open Access

    Remi KAWAKAMI  Satoshi NIIYAMA  Yutaka NAKAGAWA  Yuji SODA  

     
    INVITED PAPER

      Vol:
    E94-C No:11
      Page(s):
    1749-1754

    We proposed a novel UV curable reactive mesogen monomer for VA-LCD with Polymer-Sustained (Stabilized) Vertical Alignment (PSVA) which shows a high display performance. The experimental results reveal that the PSVA by the novel-monomer realizes less image sticking and better response time.

  • A Step towards Static Script Malware Abstraction: Rewriting Obfuscated Script with Maude

    Gregory BLANC  Youki KADOBAYASHI  

     
    PAPER

      Vol:
    E94-D No:11
      Page(s):
    2159-2166

    Modern web applications incorporate many programmatic frameworks and APIs that are often pushed to the client-side with most of the application logic while contents are the result of mashing up several resources from different origins. Such applications are threatened by attackers that often attempts to inject directly, or by leveraging a stepstone website, script codes that perform malicious operations. Web scripting based malware proliferation is being more and more industrialized with the drawbacks and advantages that characterize such approach: on one hand, we are witnessing a lot of samples that exhibit the same characteristics which make these easy to detect, while on the other hand, professional developers are continuously developing new attack techniques. While obfuscation is still a debated issue within the community, it becomes clear that, with new schemes being designed, this issue cannot be ignored anymore. Because many proposed countermeasures confess that they perform better on unobfuscated contents, we propose a 2-stage technique that first relieve the burden of obfuscation by emulating the deobfuscation stage before performing a static abstraction of the analyzed sample's functionalities in order to reveal its intent. We support our proposal with evidence from applying our technique to real-life examples and provide discussion on performance in terms of time, as well as possible other applications of proposed techniques in the areas of web crawling and script classification. Additionally, we claim that such approach can be generalized to other scripting languages similar to JavaScript.

  • Text-Color-Independent Binarization for Degraded Document Image Based on MAP-MRF Approach

    Hideaki ORII  Hideaki KAWANO  Hiroshi MAEDA  Norikazu IKOMA  

     
    PAPER-Image Processing

      Vol:
    E94-A No:11
      Page(s):
    2342-2349

    We propose a novel background and foreground estimation algorithm in MAP-MRF approach for binarization of degraded document image. In the proposed algorithm, an assumption that background whiteness and foreground blackness is not employed differently from the conventional algorithm, and we employ character's irregularities based on local statistics. This makes the method possible to apply to the image with various colored characters, ex. outlined characters by colored background. The effectiveness and the validity are shown by applying the proposed method to various degraded document images.

3081-3100hit(8214hit)