The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Cu(4258hit)

4181-4200hit(4258hit)

  • Analysis of Head Movement in the Depth Direction and Vergence Eye Movement Coordination

    Mitsuho YAMADA  Kenya UOMORI  

     
    LETTER

      Vol:
    E75-A No:12
      Page(s):
    1768-1773

    We analyzed vergence change by moving both the target and the subject toward depth direction simultaneously. It has been suggested that the command for vergence movement caused by depth-direction-head-movement and that caused by target movement are generated separately, then combined in the oculomotor system.

  • The Higher-Order Moment Function of Superposed Markov Jumping Processes with Its Application to the Analysis of Membrane Current Fluctuations

    Kazuo YANA  Hiroyuki MINO  Nobuyuki MORIMOTO  

     
    PAPER-Nonlinear Phenomena and Analysis

      Vol:
    E75-A No:12
      Page(s):
    1805-1813

    This paper describes the higher-order moment analysis of superposed Markov jumping processes. A superposed Markov jumping process is defined as a linear superposition of a finite number of piecewise constant real valued stochastic process whose value changes are associated with state transitions in an underlying descrete state continuous time Markov process. Some phenomena are modeled well by the process such as membrane current fluctuations observed at bio-membranes or load fluctuations in electrical power systems. Theoretical formula of the moment function of any order k is derived and the parameter estimation problem utilizing higher-order moment functions is discussed. A new method of estimating the kinetic parameters of membrane current fluctuations is proposed as a possible application.

  • Thrashing in an Input Buffer Limiting Scheme under Various Node Configurations

    Shigeru SHIMAMOTO  Jaidev KANIYIL  Yoshikuni ONOZATO  Shoichi NOGUCHI  

     
    PAPER

      Vol:
    E75-B No:12
      Page(s):
    1327-1337

    This paper is a study on the behavioral aspects of the input buffer limiting scheme whose basic feature is to award priority to the transit messages over the input messages so that congestion does not develop in the network. The numerical method employed in the analysis is that proposed in Ref.(7). The performance aspects are studied for different buffer capacities, different message handling capacities and different levels of reservation for transit traffic. The numerical method indicates that thrashing occurs at low levels of reservation for the transit messages, irrespective of the buffer size or the processor capacities of the node. This observation is supported by simulation results. With reference to the state-space of the model of our study, the congestion aspects are related to two Liapunov functions. Under the domain of one of the Liapunov functions, the evolution of the perturbed system is towards a congested state whereas, under the domain of the other Liapunov function, the evolution is towards a congestion-free state. Regardless of the configuration, it is found that the fundamental characteristic of the congestion under the input buffer limiting scheme is the characteristic of a fold catastrophe. In the systems with insufficient level of reservation for the transit traffic, the performance degradation appears to be inevitable, irrespective of the capacities of the nodal processor and output channel processor, and the size of the buffer pool. Given such an inevitability, the active life of a node under a typical node configuration is studied by simulation. A suitable performance index is suggested to assess the performance of deadlock-prone nodes.

  • Scattering from Conductor or Complementary Aperture Array on a Semi-infinite Substrate

    Hideaki WAKABAYASHI  Masanobu KOMINAMI  Shinnosuke SAWA  Hiroshi NAKASHIMA  

     
    LETTER

      Vol:
    E75-A No:12
      Page(s):
    1762-1764

    Frequency Selective Screens (FSS) with conductor or complementary aperture array are investigated. The electric current distribution on conductor or the magnetic current distribution on aperture is determined by the moment method in the spectral domain. In addition, the power reflection coefficients are calculated and the scattering properties are considered.

  • Array Structure Using Basic Wiring Channels for WSI Hypercube

    Hideo ITO   

     
    PAPER-Fault Tolerant Computing

      Vol:
    E75-D No:6
      Page(s):
    884-893

    A new design method is proposed for realizing a hypercube network (HC) structured multicomputer system on a wafer using wafer-scale integration (WSI). The probability that an HC can be constructed on a wafer is higher in this method than in the conventional method; this probavility is called a construction probability. We adopt the FUSS method for the processor (PE) address allocation in our desing because it has a high success probability in the allocation. Even if the design renders the address allocation success probalility hegher, it is of no use if it makes either the maximum wiring length between PEs or the array size (wiring area) larger. A new wiring channel structure capable of connecting PEs on a wafer is proposed in this paper, where a channel, called a basic channel, is used. A one-dimensional-array sub-HC row network (RN) or column networks (CN) can be constructed using the basic channel. The sub-HC construction method, which embeds wirings into the basic channel, is also proposed. It requires almost the same wiring width as conventional method. However, it has an advantage in that maximum wiring length between PEs can be about half that of the conventional method. If PEs must be shifted in the case of PE defects, they can be shifted and connected to the basic channel using other PE shifting channels, and an RN or CN can be constructed. The maximum wiring length between PEs, array size, and construction probability will also be derived, and it will be shown that the proposed design is superior to the conventional one.

  • Recursive Copy Networks for Large Multicast ATM Switches

    Shigeru SHIMAMOTO  Wen De ZHONG  Yoshikuni ONOZATO  Jaidev KANIYIL  

     
    PAPER-Switching and Communication Processing

      Vol:
    E75-B No:11
      Page(s):
    1208-1219

    This paper presents a new architecture of a copy network which employs the principle of recursive generation of copy cells. The proposed architecture achieves high utilization of the links and buffers of the copy network, and preserves the cell sequence. The architecture lends itself modularity so that large multicast ATM switches can be fabricated by employing the proposed copy network. Two different modular structures - one for reduced latency of the unicast cell and the master cell from which copies are made, and the other for reduced hardware overhead - for realizing large multicast ATM switches are configured. The hardware of functional elements of the copy network are the same as those of the functional elements of a modular point-to-point switch proposed earlier, thereby resulting in the modularity of functional elements as well. Simulation studies show that the proposed copy network achieves high throughput and low cell loss probability, and the required buffer sizes are small. The delay of cells is found to be very small for traffic loads up to 90%.

  • A Tool for Computing the Output Code Spaces and Verifying the Self-Checking Properties in Complex Self-checking Systems

    Makhtar BOUDJIT  Michael NICOLAIDIS  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    824-834

    In complex self-checking systems several blocks (i.e. functional blocks and checkers) are embedded. In order to check the self-checking properties of such blocks we need to know the set of vectors they receive from the blocks feeding their inputs (i.e. the code word output spaces of the source blocks). In a complex system the computation of the output spaces by means of exhaustive simulation of the system is intractable. In this paper we present a tool which performs this computation with low CPU time. Some other tools allowing to verify the self-checking properties of embedded blocks (like the strongly fault secure property of embedded PLAs and the self-testing property of embedded checkers), have also been developed and experimented.

  • A Design Method of SFS and SCD Combinational Circuits

    Shin'ichi HATAKENAKA  Takashi NANYA  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    819-823

    Strongly Fault-Secure (SFS) circuits are known to achieve the TSC goal of producing a non-codeword as the first erroneous output due to a fault. Strongly Code-Disjoint (SCD) circuits always map non-codeword inputs to non-codeword outputs even in the presence of faults so long as the faults are undetectable. This paper presents a new generalized design method for the SFS and SCD realization of combinational circuits. The proposed design is simple, and always gives an SFS and SCD combinational circuit which implements any given logic function. The resulting SFS/SCD circuits can be connected in cascade with each other to construct a larger SFS/SCD circuit if each interface is fully exercised.

  • A General Analysis of the Zero-Voltage Switched Quasi-Resonant Buck-Boost Type DC-DC Converter in the Continuous and Discontinuous Modes of the Reactor Current

    Hirofumi MATSUO  Hideki HAYASHI  Fujio KUROKAWA  Mutsuyoshi ASANO  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1159-1170

    The characteristics of voltage-resonant dc-dc converters have already been analyzed and described. However, in the conventional analysis, the inductance of the reactor is assumed to be infinity and the loss resistance of the power circuit is not taken into account. Also, in some cases, the averaging method is applied to analyze the resonant dc-dc converters as well as the pwm dc-dc converters. Consequently, the results from conventional analysis are not entirely in agreement with the experimental ones. This paper presents a general design-oriented analysis of the buck-boost type voltage-resonant dc-dc converter in the continuous and discontinuous modes of the reactor current. In this analysis, the loss resistance in each part of the power circuit, the inductance of the reactor, the effective value (not mean value) of the power loss, and the energy-balance among the input, output and internal-loss powers are taken into account. As a result, the behavior and characteristics of the buck-boost type voltage-resonant dc-dc converter are fully explained. It is also revealed that there is a useful mode in the discontinuous reactor current region, in which the output voltage can be regulated sufficiently for the load change from no load to full load and for the relatively large change of the input voltage, and then the change in the switching frequency can be kept relatively small.

  • A High-Input-Voltage Converter Operating at 200kHz

    Satoshi OHTSU  Hisao ISHII  Takashi YAMASHITA  Toshiyuki SUGIURA  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1151-1158

    A new circuit and a transformer structure is described for a high-input-voltage converter operating at a high switching frequency. The two-MOSFET forward converter is suitable for a high-input-voltage converter. To increase the switching frequency, the reset period of the transformer core flux must be reduced. There are a few methods for decreasing the reset period. Increasing the transformer flyback voltage and reducing its stray capacitance are effective in decreasing the reset period without increasing power loss. A new two-MOSFET forward converter is proposed which uset the increased flyback voltage and a transformer structure to reduce the stray capacitance. The new converter using this transformer provides the basis for a 48-V, 100-W output, 270-V input converter operating at 200kHz with high efficiency (above 95%).

  • A Timing Calibration Technique for High-Speed Memory Test

    Mitsuhiro HAMADA  Yasumasa NISHIMURA  Mitsutaka NIIRO  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1377-1382

    This paper describes a new timing calibration method for IC testers that uses a Timing Calibration Device (TCD). The TCD is a chip fabricated using the same process the device to be tested. Since the TCD has the same assignment pins as the LSI memory device under test (called the "MUT"), it enables an IC tester to evaluate the timing accuracy at the input/output terminal of MUT. The block-select-access time of a 1 K ECL RAM, which is less than 3.0 nanoseconds, has been accurately measured using this device. A timing-calibration subsystem is proposed for IC testers as an application of the TCD. Such a device would achieve precise measurement of high-speed LSI memory devices.

  • A High-Frequency Link Resonant Inverter

    Tadahito AOKI  Yousuke NOZAKI  Yutaka KUWATA  Tohru KOYASHIKI  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1126-1133

    This paper describes configuration and operation of a high-frequency link resonant inverter using cycloconverter techniques. In this inverter, a resonant link high-frequency voltage generated in a primary resonant inverter is isolated by a high-frequency transformer, then directly converted into a resonant link low-frequency voltage in a cycloconverter. The switching losses and surge voltage levels can be reduced by making all switches in the primary inverter and the cycloconverter operate at zero voltage. The relationship between characteristic impedance of the resonant circuit and the conversion efficiency, and the distortion factor characteristics of the output voltage waveforms are discussed by comparing of analytical and experimental results.

  • An Algebraic Specification of a Daisy Chain Arbiter

    Yu Rong HOU  Atsushi OHNISHI  Yuji SUGIYAMA  Takuji OKAMOTO  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    778-784

    There have been few studies on formal approaches to the specification and realization of asynchronous sequential circuits. For synchronous sequential circuits, an algebraic method is proposed as one of such approaches, but it cannot be applied to asynchronous ones directly. This paper describes an algebraic method of specifying the abstract behavior of asynchronous sequential circuits. We select an daisy chain arbiter as an example of them. In the arbiter, state transitions are caused by input changes, and all the modules do not always make state transitions simultaneously. These are main obstacles to specify it in the same way as sychronous sequential circuits. In order to remove them, we modify the meaning of input in specifications and introduce pseudo state transitions so that we can regard all the modules as if they make state transitions simultaneously. This method can be applied to most of the other asynchronous sequential circuits.

  • Automatic Correction of Left-Ventricular Pressure Waveform Using the Natural Observation Method

    Jun-ichi HORI  Yoshiaki SAITOH  Tohru KIRYU  Taizo IIJIMA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E75-D No:6
      Page(s):
    909-915

    The pressure waveforms indicated on a catheter manometer system are subject to serious distortion due to the resonance of the catheter itself, or the compliance of a particular transducer. Although several methods have been proposed for improving those characteristics, they ahave never been put into practice. We have focused on the transfer function of the catheter manometer, and made a pilot system, using the natural observation method. This method has been suggested as a means of studying the structure of the instantaneous waveform. In this manner, we were able to increace the bandwidth in the ferquency domain and reduce the ringing in the time domain. Correction was performed automatically, using a step wave. Reproduction of the waveform with a flushing device, was a task of equal simplicity, that allowed us to estimate the system parameters so that the response waveform became step-like. In the experiment, our system provided distortion-free left-ventricular pressure waveform measurements and exact evaluation of the cardiac pumping system. The values obtained came much closer to the original figures arrived at by the catheter-tip manometer system.

  • A Petri-Net-Based Programming Environment and Its Design Methodology for Cooperating Discrete Event Systems

    Naoshi UCHIHIRA  Mikako ARAMI  Shinichi HONIDEN  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1335-1347

    This paper describes MENDELS ZONE, a Petri-net-based concurrent programming environment, which is especially suitable for cooperating discrete event systems. MENDELS ZONE adopts MENDEL net, which is a type of high level (hierarchical colored) Petri net. One of the characteristics of the MENDEL nets is a process-oriented hierarchy like CCS, which is different from the subnet-oriented hierarchy in the Jensen's hierarchical colored Petri net. In a process-oriented hierarchy, a hierarchical unit is a process, which is more natural for cooperating and decentralized discrete event control systems. This paper also proposes a design methodology for MENDEL nets. Although many Petri net tools have been proposed, most tools support only drawing, simulation, and analysis of Petri nets; few tools support the design methodology for Petri nets. While Petri nets are good final design documents easy to understand, analyzable, and executable it is often difficult to write Petri nets directly in an earlier design phase when the system structure is obscure. A proposed design methodology makes a designer to construct MENDEL nets systematically using causality matrices and temporal logic. Furthemore, constructed MENDEL nets can be automatically compiled into a concurrent programming language and executed on a parallel computer.

  • An MOS Current Mode Logic (MCML) Circuit for Low-Power Sub-GHz Processors

    Masakazu YAMASHINA  Hachiro YAMADA  

     
    PAPER-Low-Voltage Operation

      Vol:
    E75-C No:10
      Page(s):
    1181-1187

    This paper describes a new 0.5-µm MOS current mode Logic (MCML) circuit that operates at 1.2 V, while maintaining high-speed performance, comparable with that of bipolar current mode circuits. An MCML circuit consists of differentially operating MOS transistors and a constant current source. Its performance at low voltage is compared with that of a CMOS circuit and bipolar current mode circuits. At 1.2 V, the MCML circuit has 90% the delay time of a CMOS circuit at 3.3 V. Delay times of CML and ECL circuits are 80% and 67% of that of the MCML circuit, respectively. Power of a 0.5-µm 500-MHz MCML circuit at 1.2 V, however, is 29%, 67% and 46%, of that of CMOS at 3.3 V, CML at 1.8 V and ECL at 2.6 V, respectively. Power-delay products of 500-MHz CMOS, CML and ECL circuits (normalized by the MCML circuit power-delay product) are 3.8, 1.2 and 1.5, respectively. MCML circuits can be used to construct any logic circuits. High-speed compact circuits are feasible, because MCML circuits output complementary signals. The delay time of an MCML full adder is only 200 ps. This is three times faster than that of a 3.3-V CMOS full adder. An MCML circuit has good characteristics and is widely applicable to logic circuits, so it is a useful circuit for producing sub-GHz processors.

  • 3 V-Operation GaAs Prescaler IC with Power Saving Function

    Noriyuki HIRAKATA  Mitsuaki FUJIHIRA  Akihiro NAKAMURA  Tomihiro SUZUKI  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1115-1120

    High frequency and low power 128/129 dual modulus prescaler ICs are developed for mobile communication applications, using 0.5 µm GaAs MESFET technology. Provided with an on-chip voltage regulator, a prescaler IC with an input amplifier operates in a wide frequency range from 200 MHz to 1,500 MHz at input power from -15 dBm to +17 dBm at the temperature of -30 to +120 with supply voltage of 2.7 V, 3.0 V and 5.0 V. At the same time, it demonstrated its low power characteristics consuming 3.68 mA with 3.0 V at +30 in operation, 0.16 mA while powered-off. Another prescaler IC without an input amplifier operates up to 1,650 MHz with Vdd=2.7 V, 3.0 V and 5.0 V at +30, dissipating 2.74 mA/3.0 V.

  • A 1000 MIPS Superscalar Processor and Its Fault Tolerant Design

    Alberto Palacios PAWLOVSKY  Makoto HANAWA  Osamu NISHII  Tadahiko NISHIMUKAI  

     
    PAPER-RISC Technologies

      Vol:
    E75-C No:10
      Page(s):
    1212-1222

    Advances in semiconductor technology have made it possible to develop an experimental 1000 MIPS superscalar RISC processor. The high performance of this processor was obtained using architectural concepts such as multiple CPU configuration, superscalar microarchitecture, and high-speed device technology. This paper focuses on the novel features of this RISC processor, its device technology, architectural characteristics and one technology that has been devised to make its integer CPU cores fault-tolerant.

  • An Automatic Layout Generator for Bipolar Analog Modules

    Takao ONOYE  Akihisa YAMADA  Itthichai ARUNGSRISANGCHAI  Masakazu TANAKA  Isao SHIRAKAWA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1306-1314

    An autonatic layout scheme dedicated to bipolar analog modules is described. A layout model is settled in such a way that the VCC/GND line is laid out on top/bottom edge of a rectangular region, within which the whole elements are placed and interconnected. According to this simple modeling, a layout scheme can be constructed of a series of the following algorithms: First clustering is executed for partitioning a given circuit into clusters, each having connections with VCC and GND lines, and then linear ordering is applied to clusters so as to be placed in a one-dimensional array. After a relative placement of circuits elements in each cluster, a block compactor is implemented by means of packing blocks in each cluster into an idle space, and then a detailed router is conducted to attain 100% interconnection. Finally a layout compactor is invoked to pack all layout patterns into a rectangle of the minimum possible area. A number of implementation results are also shown to reveal the practicability of the proposed analog module generator.

  • Coded Time-Symbolic Simulation for Timing Verification of Logic Circuits

    Nagisa ISHIURA  Yutaka DEGUCHI  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1247-1254

    In this paper we propose a new timing verification technique named coded time-symbolic simulation, CTSS. Our interest is on simulation of logic circuits consisting of gates whose delay is specified only by its minimum and maximum values. Conventional logic simulation based on min/max delay model leads to over-pessimistic results. In our new method, the cases of possible delay values of each gate are encoded by binary vectors. The circuit behavior for all the possible combinations of the delay values are simulated based on symbolic simulation by assigning Boolean variables to the binary vectors. This simulation technique can deal with logic circuits containing feedback loops as well as combinational circuits. We implemented an efficient simulator by using shared binary decision diagrams (SBDD's) as internal representation of Boolean functions. We also propose novel techniques of analyzing the results of CTSS.

4181-4200hit(4258hit)