The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERO(858hit)

721-740hit(858hit)

  • Fiber-Optic Low Coherence Velocimetry by Detecting Interference Fluctuations

    Yoh IMAI  Kazuhiro TANAKA  

     
    PAPER-Distributed Sensing

      Vol:
    E83-C No:3
      Page(s):
    423-427

    A new sensing method for measuring directly flow velocity by using low coherence interference techniques is proposed and demonstrated. In this method, a temporally fluctuating signal, not the Doppler frequency shift, is detected. Theoretical analysis shows that a spectrum of light backscattered from a particle takes a Gaussian form whose width is simply proportional to the flow velocity. The measured velocity is in good agreement with the actual flow velocity derived from the flow rate. The dynamic range of this sensing method is governed by the frequency range of the FFT processor used and is estimated to be 1.4 10-4 14 m/s. The depth position can be adjusted with an accuracy of approximately 30 µm which is determined by the coherence length of the light source. The velocity distribution along the depth is easily measured by changing mechanically the length of the reference arm in the low coherence interferometer.

  • Industrial Applications of FOG

    Tatsuya KUMAGAI  Wataru OHNUKI  

     
    INVITED PAPER-Fiber Optic Gyroscope

      Vol:
    E83-C No:3
      Page(s):
    378-383

    In this paper, we review recent developments in interferometric fiber-optic gyroscopes for industrial applications. These gyroscopes use only elliptical-jacket or elliptical-core polarization-maintaining-fibers to make their optical systems immune to environmental effects, and they use open-loop or closed-loop signal processing circuitry. We have begun mass production of a gyroscope for automotive navigation and location systems. The more accurate gyroscopes have been applied to a number of consumer applications such as attitude control systems of unmanned agricultural helicopter, pipe-mapping and north-finding systems. For further enhancement in terms of size, cost, and accuracy, we have developed an application specific integrated circuit and an integrated optical circuit.

  • Macrobending Characteristics of a Hetero-Core Splice Fiber Optic Sensor for Displacement and Liquid Detection

    Kazuhiro WATANABE  Kaori TAJIMA  Yuzuru KUBOTA  

     
    PAPER-Physical and Mechanical Sensors

      Vol:
    E83-C No:3
      Page(s):
    309-314

    Macrobending characteristics of a newly developed hetero-core splicing sensor is investigated from the viewpoint of the practical use intended both for relatively large distortion monitoring and for liquid adhesion detection. The hetero-core sensor can be simply fabricated by fusion splicing of a hetero-core fiber portion as short as approximately 5 mm in length, which is inserted in a typical low-transmission-loss single mode fiber with a 9-µm core diameter for the wavelength of 1.3 µm as a fiber network line. Two types of the sensor are typically realized in terms of the core diameters of 3 and 5 µm for the inserted hetero-core portion which are referred to as 9-3-9 and 9-5-9 types, respectively , with showing their distinct bending loss characteristics. This paper deals with the explorative applications of the two types of hetero-core sensors in which a bending-to-linear displacement converter and a liquid adhesion sensor are successfully examined using a 9-5-9 structure with its low insertion loss and a cladding interactive 9-3-9 structure with its high sensitivity, respectively. The low-insertion loss 9-5-9 sensor has shown the capability of monitoring millimeters-order distortion in low transmission loss fiber networks. On the other hand, the 9-3-9 type has found to be a prospective sensor for liquid adhesion detection. Operational mechanisms for these two sensors are also discussed in terms both of optical leaks occurring at the hetero-core interfaces and of the build-up of cladding modes which might interrogate the outer cladding boundary conditions of the hetero-core sensor.

  • Simultaneous Measurements of Temperature and Strain Using Stimulated Brillouin Scattering in GeO2-Doped Core and Dispersion Shifted Fiber

    Ralph POSEY, Jr.  Sandeep T. VOHRA  Alan B. TVETEN  

     
    PAPER-Distributed Sensing

      Vol:
    E83-C No:3
      Page(s):
    413-417

    Simultaneous measurements of temperature and strain were demonstrated by measuring the stimulated Brillouin scattering frequency shift and gain in two separate types of optical fibers: dispersion shifted and special GeO2-doped optical fiber. This novel approach allows for a hybrid frequency division and time division multiplexing scheme for developing advanced distributed strain sensing. The preliminary measurements show a temperature resolution of approximately 1.6 and a strain resolution of 32 µε.

  • Optical Fiber Humidity Sensor with a Fast Response Time Using the Ionic Self-Assembly Method

    Francisco J. ARREGUI  Kristie L. COOPER  Yanjing LIU  Ignacio R. MATIAS  Richard O. CLAUS  

     
    PAPER-Chemical, Environmental, Biochemical and Medical Sensors

      Vol:
    E83-C No:3
      Page(s):
    360-365

    An optical fiber humidity sensor was fabricated forming a nanometer-scale Fabry-Perot interferometer by using the Ionic Self-Assembly Monolayer (ISAM) method. The materials used were Poly R-478 and poly(diallyldimethyl ammonium chloride). Taking advantage of the precision that the ISAM method can achieve in controlling the length of the nano cavity, the length was fit to obtain a maximum variation of 8.7 dB of reflected optical power between 11.3% and 85% RH. The sensor exhibited a fast response time and was able to monitor the human breathing.

  • Distributed Strain Monitoring with Arrays of Fiber Bragg Grating Sensors on an In-Construction Steel Box-Girder Bridge

    Sandeep VOHRA  Gregg JOHNSON  Michael TODD  Bruce DANVER  Bryan ALTHOUSE  

     
    INVITED PAPER-System Applications and Field Tests

      Vol:
    E83-C No:3
      Page(s):
    454-461

    This paper describes the implementation of a Bragg grating-based strain-monitoring system on the Viaduc des Vaux bridge during its construction in 1997 and 1998. The bridge was constructed in a cantilevered, push/pull incremental launching method, and data obtained from two tests were shown to reveal interesting features of the box-girder strain response during the push and pull phases, particularly with regard to limit loads and local buckling. When appropriate, data were compared to data obtained from conventional resistive strain gages and from simple analytical models.

  • A Novel All-Fiber Ellipsometer

    Leszek R. JAROSZEWICZ  Aleksander KIEZUN  Ryszard SWILLO  

     
    PAPER-Interferometry and Polarimetry

      Vol:
    E83-C No:3
      Page(s):
    384-390

    In the paper, a theoretical and experimental investigation of a new type of the in-line optical fiber ellipsometer is described. The discussed device, based on the Sagnac interferometer, has the possibility to detect the changes of full polarisation state. The detection of the polarisation state in real time by a system containing standard single-mode fiber and an appropriate applied modulation technique is a new system property. The device uses interferometric measurement technique based on the fourth Fresnel-Arago's condition, which secures very good system accuracy and stability, also presented in the paper.

  • Wavelet Image Coding with Context-Based Zerotree Quantization Framework

    Kai YANG  Hiroyuki KUDO  Tsuneo SAITO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:2
      Page(s):
    211-222

    We introduce a new wavelet image coding framework using context-based zerotree quantization, where an unique and efficient method for optimization of zerotree quantization is proposed. Because of the localization properties of wavelets, when a wavelet coefficient is to be quantized, the best quantizer is expected to be designed to match the statistics of the wavelet coefficients in its neighborhood, that is, the quantizer should be adaptive both in space and frequency domain. Previous image coders tended to design quantizers in a band or a class level, which limited their performances as it is difficult for the localization properties of wavelets to be exploited. Contrasting with previous coders, we propose to trace the localization properties with the combination of the tree-structured wavelet representations and adaptive models which are spatial-varying according to the local statistics. In the paper, we describe the proposed coding algorithm, where the spatial-varying models are estimated from the quantized causal neighborhoods and the zerotree pruning is based on the Lagrangian cost that can be evaluated from the statistics nearby the tree. In this way, optimization of zerotree quantization is no longer a joint optimization problem as in SFQ. Simulation results demonstrate that the coding performance is competitive, and sometimes is superior to the best results of zerotree-based coding reported in SFQ.

  • Very Long Baseline Connected Interferometry via the STM-16 ATM Network

    Hitoshi KIUCHI  Yukio TAKAHASHI  Akihiro KANEKO  Hisao UOSE  Sotetsu IWAMURA  Takashi HOSHINO  Noriyuki KAWAGUCHI  Hideyuki KOBAYASHI  Kenta FUJISAWA  Jun AMAGAI  Junichi NAKAJIMA  Tetsuro KONDO  Satoru IGUCHI  Takeshi MIYAJI  Kazuo SORAI  Kouichi SEBATA  Taizoh YOSHINO  Noriyuki KURIHARA  

     
    PAPER-ATM Switch and System Development

      Vol:
    E83-B No:2
      Page(s):
    238-245

    The Communications Research Laboratory (CRL), the National Astronomical Observatory (NAO), the Institute of Space and Astronoutical Science (ISAS), and the Telecommunication Network Laboratory Group of Nippon Telegraph and Telephone Corporation (NTT) have developed a very-long-baseline-connected-interferometry array, maximum baseline-length was 208 km, using a high-speed asynchronous transfer mode (ATM) network with an AAL1 that corresponds to the constant bit-rate protocol. The very long baseline interferometry (VLBI) observed data is transmitted through a 2.488-Gbps [STM-16/OC-48] ATM network instead of being recorded onto magnetic tape. By combining antennas via a high-speed ATM network, a highly-sensitive virtual (radio) telescope system was realized. The system was composed of two real-time VLBI networks: the Key-Stone-Project (KSP) network of CRL (which is used for measuring crustal deformation in the Tokyo metropolitan area), and the OLIVE (optically linked VLBI experiment) network of NAO and ISAS which is used for astronomy (space-VLBI). These networks operated in cooperation with NTT. In order to realize a virtual telescope, the acquired VLBI data were corrected via the ATM networks and were synthesized using the VLBI technique. The cross-correlation processing and data observation were done simultaneously in this system and radio flares on the weak radio source (HR1099) were detected.

  • Chemical Beam Epitaxy Grown Carbon-Doped Base InP/InGaAs Heterojunction Bipolar Transistor Technology for Millimeter-Wave Applications

    Jong-In SONG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E83-C No:1
      Page(s):
    115-121

    Carbon-doped base InP/InGaAs heterojunction bipolar transistor (HBT) technology for millimeter-wave application is presented. Ultra-high carbon doping of InGaAs layers lattice-matched to InP with hole concentrations in excess of 1 1020 /cm3 has been achieved using a chemical beam epitaxy (CBE). Heavily carbon-doped base InP/InGaAs HBT epi structures were grown and small area, self-aligned HBTs with 1.5 µm emitter finger width were fabricated using triple mesa etching and polyimide planarization techniques. The fabricated small area transistors showed a common-emitter current gain cut-off frequency (fT) as high as 200 GHz. Preliminary device reliability test results showed the potential of the heavily carbon-doped base InP/InGaAs HBT for high performance microwave and millimeter-wave applications. Applications of the InP/InGaAs single heterojunction bipolar transistor (SHBT) and double heterojunction bipolar transistor (DHBT) to a direct-coupled feedback amplifier and a power transistor, respectively, are presented.

  • Low-Noise, Low-Power Wireless Frontend MMICs Using SiGe HBTs

    Hermann SCHUMACHER  Uwe ERBEN  Wolfgang DURR  Kai-Boris SCHAD  

     
    INVITED PAPER-Low Power-Consumption RF ICs

      Vol:
    E82-C No:11
      Page(s):
    1943-1950

    Silicon-based monolithic microwave integrated circuits (MMICs) present an interesting option for low-cost consumer wireless systems. SiGe/Si heterojunction bipolar transistors (HBTs) are a major driving force behind Si-based MMICs, because they offer excellent microwave performance without aggressive lateral scaling. This article reviews opportunities for receiver frontend components (low-noise amplifiers and mixers) using SiGe HBTs.

  • A GSM900/DCS1800 Dual-Band MMIC Power Amplifier Using Outside-Base/Center-Via-Hole Layout Multifinger HBT

    Kazutomi MORI  Kenichiro CHOUMEI  Teruyuki SHIMURA  Tadashi TAKAGI  Yukio IKEDA  Osami ISHIDA  

     
    PAPER-RF Power Devices

      Vol:
    E82-C No:11
      Page(s):
    1913-1920

    A GSM900/DCS1800 dual-band AlGaAs/GaAs HBT (heterojunction bipolar transistor) MMIC (monolithic microwave integrated circuit) power amplifier has been developed. It includes power amplifiers for GSM900 and DCS1800, constant voltage bias circuits and a d. c. switch. In order to achieve high efficiency, the outside-base/center-via-hole layout is applied to the final-stage HBT of the MMIC amplifier. The layout can realize uniform output load impedance and thermal distribution of each HBT finger. The developed MMIC amplifier could provided output power of 34.5 dBm and power-added efficiency of 53.4% for GSM900, and output power of 32.0 dBm and power-added efficiency of 41.8% for DCS1800.

  • Performance Evaluation of Reliable Multicast Communication Protocols under Heterogeneous Transmission Delay Circumstances

    Takashi HASHIMOTO  Miki YAMAMOTO  Hiromasa IKEDA  James F. KUROSE  

     
    PAPER-Signaling System and Communication Protocol

      Vol:
    E82-B No:10
      Page(s):
    1609-1617

    This paper presents a performance evaluation of NAK-based reliable multicast communication protocols operating in an environment where end-to-end delay are heterogeneous. In the case of heterogeneous delay, performance of a timer-based retransmission control scheme may become worse. We show that a counter-based retransmission control scheme works well in the case of heterogeneous transmission delay. We also compare two NAK-based protocols and show that a NAK-multicasting protocol outperforms a NAK-unicasting protocol from the viewpoint of scalability even when delays are heterogeneous.

  • A Group Synchronization Mechanism for Stored Media and Its Measured Performance in a Heterogeneous Network

    Yutaka ISHIBASHI  Shuji TASAKA  

     
    PAPER-Communication Networks and Services

      Vol:
    E82-B No:7
      Page(s):
    1009-1018

    This paper proposes a group synchronization mechanism which synchronizes slave destinations with the master destination for stored media in multicast communications. At the master and slave destinations, an intra-stream and an inter-stream synchronization mechanisms which were previously proposed by the authors are employed to output the master media stream and slave media streams synchronously. We achieve group synchronization by adjusting the output timing of the master media stream at each slave destination to that at the master destination. We also deal with control of joining an in-progress multicast group. The paper presents experimental results using an interconnected ATM-Ethernet LAN, which is a kind of heterogeneous network. In our experimental system, stored voice and video streams are multicast from a source to plural destinations distributed among distinct networks, and then they are synchronized and output. Furthermore, the paper demonstrates the effectiveness of the mechanism.

  • FDTD Analysis and Experiment of Fabry-Perot Cavities at 60 GHz

    Ronan SAULEAU  Philippe COQUET  Daniel THOUROUDE  Jean-Pierre DANIEL  Harunobu YUZAWA  Nobumitsu HIROSE  Toshiaki MATSUI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1139-1147

    The Finite-Difference Time-Domain (FDTD) method has been applied to study the scattering characteristics of Fabry-Perot cavities with infinite planar periodic surfaces. Periodic Boundary Conditions (PBC) are used to reduce the analysis to one unit periodic volume. Both dielectric and metallic losses are included in the algorithm using a frequency dependent formalism. This technique is used to study the frequency response of plane parallel Fabry-Perot cavities with square aperture metal mesh mirrors. These cavities are assumed to be illuminated by a normally incident plane wave. After a detailed description of the algorithm, we show theoretically the separate effects of dielectric and metal losses on the transmission coefficient of such cavities. We compare also simulation results to measurements, in the 60 GHz band, of resonant frequencies and Q factors of cavities with various mesh parameters.

  • Flexible Zerotree Coding of Wavelet Coefficients

    Sanghyun JOO  Hisakazu KIKUCHI  Shigenobu SASAKI  Jaeho SHIN  

     
    PAPER-Image Theory

      Vol:
    E82-A No:6
      Page(s):
    1117-1125

    We introduce an extended EZW coder that uses flexible zerotree coding of wavelet coefficients. A flexible parent-child relationship is defined so as to exploit spatial dependencies within a subband as well as hierarchical dependencies among multi-scale subbands. The new relationship is based on a particular statistics that a large coefficient is more likely to have large coefficients in its neighborhood in terms of space and scale. In the flexible relationship, a parent coefficient in a subband relates to four child coefficients in the next finer subband in the same orientation. If each of the children is larger than a given threshold, the parent extends its parentship to the neighbors close to its conventional children. A probing bit is introduced to indicate whether a significant parent has significant children to be scanned. This enables us to avoid excessive scan of insignificant coefficients. Also, produced symbols are re-symbolized into simple variable-length binary codes to remove some redundancy according to a pre-defined rule. As a result, the wavelet coefficients can be described with a small number of binary symbols. This binary symbol stream gives a competitive performance without an additional entropy coding and thus a fast encoding/decoding is possible. Moreover, the binary symbols can be more compressed by an adaptive arithmetic coding. Our experimental results are given in both binary-coded mode and arithmetic-coded mode. Also, these results are compared with those of the EZW coder.

  • Low Distortion Ku-Band Power Heterojunction FET Amplifier Utilizing an FET with Grounded Source and Drain

    Kohji MATSUNAGA  Yasuhiro OKAMOTO  Mikio KANAMORI  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    744-749

    This paper describes amplification with improved linearity by employing a linearizing circuit in an input circuit of an internally-matched Ku-band high power amplifier. The linearizing circuit is composed of series L, C, R and an FET with grounded source and drain, and is connected between the input signal line and ground. This linearizing circuit was applied to a Ku-band 10 W output power amplifier utilizing a 25.2 mm gate-width double-doped Heterojunction FET. The power amplifier demonstrated a 8 dB reduction of the third-order intermodulation at about 6 dB output power backoff point from the 2 dB output compression point.

  • Harmonic Feedback Circuit Effects on Intermodulation Products and Adjacent Channel Leakage Power in HBT Power Amplifier for 1. 95 GHz Wide-Band CDMA Cellular Phones

    Kazukiyo JOSHIN  Yasuhiro NAKASHA  Taisuke IWAI  Takumi MIYASHITA  Shiro OHARA  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    725-729

    Second harmonic signal feedback technique is applied to an HBT power amplifier for Wide-band CDMA (W-CDMA) mobile communication system to improve its linearity and efficiency. This paper describes the feedback effect of the 2nd harmonic signal from the output of the amplifier to the input on the 3rd order intermodulation distortion (IMD) products and Adjacent Channel leakage Power (ACP) of the power amplifier. The feedback amplifier, using an InGaP/GaAs HBT with 48 fingers of 3 20 µ m emitter, exhibits a 10 dB reduction in the level of the 3rd order IMD products. In addition, an ACP improvement of 7 dB for the QPSK modulation signal with a chip rate of 4.096 Mcps at 1.95 GHz was realized. As a result, the amplifier achieves a power-added efficiency of 41.5%, gain of 15.3 dB, and ACP of 43.0 dBc at a 5 MHz offset frequency and output power of 27.5 dBm. At the output power of 28 dBm, the power-added efficiency increases to 43.3% with an ACP of 40.8 dBc.

  • Partial Order Reduction in Symbolic State Space Traversal Using ZBDDs

    Minoru TOMISAKA  Tomohiro YONEDA  

     
    LETTER-Fault Tolerant Computing

      Vol:
    E82-D No:3
      Page(s):
    704-711

    In order to reduce state explosion problem, techniques such as symbolic state space traversal and partial order reduction have been proposed. Combining these two techniques, however, seems difficult, and only a few research projects related to this topic have been reported. In this paper, we propose handling single place zero reachability problem of Petri nets by using both partial order reduction and symbolic state space traversal based on ZBDDs. We also show experimental results of several examples.

  • AlGaAs/InGaAs HBT IC Modules for 40-Gb/s Optical Receiver

    Risato OHHIRA  Yasushi AMAMIYA  Takaki NIWA  Nobuo NAGANO  Takeshi TAKEUCHI  Chiharu KURIOKA  Tomohiro CHUZENJI  Kiyoshi FUKUCHI  

     
    PAPER-Compound Semiconductor Devices

      Vol:
    E82-C No:3
      Page(s):
    448-455

    Optical frontend and distributed amplifier IC modules, both containing GaAs heterojunction-bipolar-transistors (HBT), have been developed for 40 Gb/s optical receiver. To achieve high-speed operations, the elements in the modules including the IC and signal lines, were designed to achieve a wider bandwidth with lower electrical reflection. The influence of a bonding-wire inductance was taken into particular account in optimizing the parameters of the ICs. The optical frontend, consisting of a waveguide pin-photodiode and an HBT preamplifier IC, exhibits a transimpedance gain of 43 dBΩ and a bandwidth of 31 GHz. The distributed amplifier IC module achieves a gain of 9 dB and a bandwidth of 39 GHz. A 40-Gb/s optical receiver constructed with these modules exhibited a high receiver sensitivity of -28. 2 dBm for a 40-Gb/s optical return-to-zero signal.

721-740hit(858hit)