The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERO(858hit)

821-840hit(858hit)

  • Computation of SAR Inside Eyeball for 1.5-GHz Microwave Exposure Using Finite-Difference Time-Domain Technique

    Osamu FUJIWARA  Akira KATO  

     
    PAPER

      Vol:
    E77-B No:6
      Page(s):
    732-737

    From the standpoint of studying the biological effects of microwaves on human eyes, this paper numerically examines the specific absorption rate (SAR) inside the eyeball, using the finite-difference time-domain (FD-TD) method, which does not require very much computer storage. Two kinds of highly heterogeneous models constructed by us and Taflove's group are used to compute the SARs inside the eyeball for 1.5-GHz microwave exposure under the 1991 ANSI protection guideline. The SAR contour lines and the spatial distribution are shown inside the eyeball. Comparison is also made between the SARs for the two computation models.

  • A System for 3D Simulation of Complex Si and Heterostructure Devices

    Paolo CONTI  Masaaki TOMIZAWA  Akira YOSHII  

     
    PAPER-Numerics

      Vol:
    E77-C No:2
      Page(s):
    220-226

    A software package has been developed for simulating complex silicon and heterostructure devices in 3D. Device geometries are input with a mouse-driven geometric modeler, thus simplifying the definition of complex 3D shapes. Single components of the device are assembled through boolean operations. Tetrahedra are used for grid generation, since any plane-faced geometry can be tessellated with tetrahedra, and point densities can be adapted locally. The use of a novel octree-like data structure leads to oriented grids where desirable. Bad angles that prevent the convergence of the control volume integration scheme are eliminated mostly through topological transformations, thus avoiding the insertion of many redundant grid points. The discretized drift-diffusion equations are solved with an iterative method, using either a decoupled (or Gummel) scheme, or a fully coupled Newton scheme. Alternatively, generated grids can be submitted to a Laplace solver in order to calculate wire capacitances and resistances. Several examples of results illustrate the flexibility and effectiveness of this approach.

  • Ultra Optoelectronic Devices for Photonic ATM Switching Systems with Tera-bits/sec Throughput

    Takeshi OZEKI  

     
    INVITED PAPER

      Vol:
    E77-B No:2
      Page(s):
    100-109

    Photonic ATM switching systems with Terabit/s throughput are desirable for future broadband ISDN systems. Since electronic LSI-based ATM switching systems are planned to have the throughput of 160Gb/s, a photonic ATM switching system should take the role of the highest layer in a hybrid switching network which includes electronic LSI-based ATM switching systems as its sub-system. This report discusses the state-of-the-art photonic devices needed for a frequency-self-routing ATM photonic switching system with maximum throughput of 5Tb/s. This kind of systems seems to be a moderate system for the first phase photonic switching system with no insuperable obstacle for initiating development, even though none of the devices and technologies required have yet been developed to meet the specifications. On the contrary, for realizing further enlarged throughput as the second-phase photonic switching system, there are huge fundamental research projects still remaining for establishing the technology utilizing the spectrum broadened over 120nm and highly-dense FDM technologies based on homodyne coherent detection, if supposing a simple architecture. "Ultra devices" seem to be the photonic devices based on new tailored materials of which gain and refractive index are designed to realize ultra-wide spectrum utilization.

  • A Note on AM Languages Outside NP co-NP

    Hiroki SHIZUYA  Toshiya ITOH  

     
    PAPER

      Vol:
    E77-A No:1
      Page(s):
    65-71

    In this paper we investigate the AM languages that seem to be located outside NP co-NP. We give two natural examples of such AM languages, GIP and GH, which stand for Graph Isomorphism Pattern and Graph Heterogeneity, respectively. We show that the GIP is in ΔP2 AM co-AM but is unlikely to be in NP co-NP, and that GH is in ΔP2 AM but is unlikely to be in NP co-AM. We also show that GIP is in SZK. We then discuss some structural properties related to those languages: Any language that is polynomial time truth-table reducible to GIP is in AM co-AM; GIP is in co-SZK if SZK co-SZK is closed under conjunctive polynomial time bounded-truth-table reducibility; Both GIP and GH are in DP. Here DP is the class of languages that can be expressed in the form X Y, where X NP and Y co-NP.

  • On the Knowledge Tightness of Zero-Knowledge Proofs

    Toshiya ITOH  Atsushi KAWAKUBO  

     
    PAPER

      Vol:
    E77-A No:1
      Page(s):
    47-55

    In this paper, we study the knowledge tightness of zero-knowledge proofs. To this end, we present a new measure for the knowledge tightness of zero-knowledge proofs and show that if a language L has a bounded round zero-knowledge proof with knowledge tightness t(|x|) 2 - |x|-c for some c 0, then L BPP and that any language L AM has a bounded round zero-knowledge proof with knowledge tightness t(|x|) 2-2-O(|x|) under the assumption that collision intractable hash functions exist. This implies that in the case of a bounded round zero-knowledge proof for a language L BPP, the optimal knowledge tightness is "2" unless AM = BPP. In addition, we show that any language L IP has an unbounded round zero-knowledge proof with knowledge tightness t(|x|) 1.5 under the assumption that nonuniformly secure probabilistic encryptions exist.

  • Demonstrating Possession without Revealing Factors

    Hiroki SHIZUYA  Kenji KOYAMA  Toshiya ITOH  

     
    PAPER

      Vol:
    E77-A No:1
      Page(s):
    39-46

    This paper presents a zero-knowledge interactive protocol that demonstrates two factors a and b of a composite number n (=ab) are really known by the prover, without revealing the factors themselves. Here the factors a and b need not be primes. The security of the protocol is based on the difficulty of computing discrete logarithms modulo a large prime.

  • Optimal Redundancy of Systems for Minimizing the Probability of Dangerous Errors

    Kyoichi NAKASHIMA  Hitoshi MATZNAGA  

     
    PAPER-Reliability and Safety

      Vol:
    E77-A No:1
      Page(s):
    228-236

    For systems in which the probability that an incorrect output is observed differs with input values, we adopt the redundant usage of n copies of identical systems which we call the n-redundant system. This paper presents a method to find the optimal redundancy of systems for minimizing the probability of dangerous errors. First, it is proved that a k-out-of-n redundancy or a mixture of two kinds of k-out-of-n redundancies minimizes the probability of D-errors under the condition that the probability of output errors including both dangerous errors and safe errors is below a specified value. Next, an algorithm is given to find the optimal series-parallel redundancy of systems by using the properties of the distance between two structure functions.

  • A New Design Method for Nonminimum Phase Adaptive Control System with Disturbances Based on Pole-Zero Placement

    Takashi YAHAGI  Jianming LU  

     
    LETTER-Control and Computing

      Vol:
    E76-A No:10
      Page(s):
    1866-1869

    This letter presents a new method for adaptive control of nonminimum phase discrete-time systems with disturbances based on the technique of pole-zero placement. The long division method is used to decompose apolynomial into a stable polynomial and an unstable one. Finally, the results of computer simulation are presented to illustrate the effectiveness of the proposed method.

  • The lmprovement in Performance-Driven Analog LSI Layout System LIBRA

    Tomohiko OHTSUKA  Nobuyuki KUROSAWA  Hiroaki KUNIEDA  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1626-1635

    The paper presents the improvement of out new approach to optimize the process parameter variation, device heat and wire parasitics for analog LSI design by explicitly incorporating various performance estimations into objective functions for placement and routing. To minimize these objective functions, the placement by the simulated annealing method, and maze routing are effectively modified with the perfomance estimation. The improvement results in the excellent performance driven layout for the large size of analog LSIs.

  • Major Factors Affecting Fiber-Optic Transmission System Design for Radio Base Stations

    Toshiyuki TSUCHIYA  Takashi SHIRAISHI  Junro ARATA  

     
    PAPER-Equipment and Device Matters

      Vol:
    E76-B No:9
      Page(s):
    1136-1144

    A fiber-optic transmission system for linking radio base stations to the mobile communication center is developed, and its performance is evaluated. The introduction of this system yields two main improvements: optimum zone allocation to increase radio frequency utilization efficiency and the elimination of service quality issues such as dead zones and traffic imbalance. Being optical, the system suffers from the interferometric noise and distortion created by multiple reflections within the fiber. Moreover, because system response is much different from that of optical CATV systems, we clarify the optical parameter selection criteria and hypothetical return loss model for an embedded fiber infrastructure. An optical multiplexing method is also introduced that reduces the quantity of fiber and connectors, as well as splicing and cable installation costs. A new ternary optical multiplexing architecture combined with a cost-effective self-tuning type WDM technique and a high isolation type circulator are proposed for the 1.3µm wavelength region. The performance of low distortion high power common amplifiers is measured with the aim of reducing the size and weight of back-up batteries, and to improve the packaging density of the typical base station.

  • 0.15 µm Gate i-AlGaAs/n-GaAs HIGFET with a 13.3 S/Vcm K-Value

    Hidetoshi MATSUMOTO  Yasunari UMEMOTO  Yoshihisa OHISHI  Mitsuharu TAKAHAMA  Kenji HIRUMA  Hiroto ODA  Masaru MIYAZAKI  Yoshinori IMAMURA  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1373-1378

    We have developed a new HIGFET structure achieving an extremely high K-value of 13.3 S/Vcm with a gate length of 0.15 µm. Self-aligned ion implantation is excluded to suppress a short-channel effect. An i-GaAs cap layer and an n+-GaAs contact layer are employed to reduce source resistance. The threshold voltage shift is as small as 50 mV when the gate length is reduced from 1.5 µm to 0.15 µm. Source resistance is estimated to be 53 mΩcm. We have also developed a new fabrication process that can achieve a shorter gate length than the minimum size of lithography. This process utilizes an SiO2 sidewall formed on the n+-GaAs contact layer to reduce the gate length. A gate length of 0.15 µm can be achieved using 0.35 µm lithography.

  • Application of AlGaAs/GaAs HBT's to Power Devices for Digital Mobile Radio Communications

    Norio GOTO  Nobuyuki HAYAMA  Hideki TAKAHASHI  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1367-1372

    This paper describes the performance of AlGaAs/GaAs HBT's developed for power applications. Their applicability to power amplifiers used in digital mobile radio communications is examined through measurement and numerical simulation, considering both power capability and linearity. Power HBT's with carbon-doped base layers showed DC current gains over 90. A linear gain of 19.2 dB, a maximum output RF power of 32.5 dBm, and a power added efficiency of 56 percent were obtained at 950 MHz. Numerical simulations showed that the power efficiency of HBT amplifiers could be improved by using harmonic trap circuits. Intermodulation measurements showed that third-order distortions were at most 21 dBc level at the 1-dB gain compression point. RF spectrum simulations using π/4 shift QPSK modulation showed that side-band spectrum generation was less than 45 dBc level at points 50 kHz off of the carrier frequency. These properties indicate that the power handling capabilities and linearity of HBT amplifiers offer promising potentials for digital mobile radio communications.

  • IC-Oriented Self-Aligned High-Performance AlGaAs/GaAs Ballistic Collection Transistors and Their Applications to High-Speed ICs

    Yutaka MATSUOKA  Shoji YAMAHATA  Satoshi YAMAGUCHI  Koichi MURATA  Eiichi SANO  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1392-1401

    This paper describes IC-oriented high-performance AlGaAs/GaAs heterojunction bipolar transistors that were fabricated to demonstrate their great potential in applications to high-speed integrated circuits. A collector structure of ballistic collection transistors with a launcher (LBCTs) shortens the intrinsic delay time of the transistors. A novel and simple self-aligned fabrication process, which features an base-metal-overlaid structure (BMO), reduces emitter- and base-resistances and collector capacitance. The combination of the thin-collector LBCT layer structure and the BMO self-alignment technology raises the average value of cutoff frequency, fT, to 160 GHz with a standard deviation as small as 4.3 GHz. By modifying collector thickness and using Pt/Ti/Pt/Au as the base ohmic contact metal in BMO-LBCTs, the maximum oscillation frequency, fmax, reaches 148 GHz with a 114 GHz fT. A 2:1 multiplexer with retiming D-type flip-flops (DFFs) at input/output stages fabricated on a wafer with the thin-collector LBCT structure operates at 19 Gbit/s. A monolithic preamplifier fabricated on the same wafer has a transimpedance of 52 dBΩ with a 3-dB-down bandwidth of 18.5 GHz and a gain S21 OF 21 dB with a 3-dB-down bandwidth of 19 GHz. Finally, a 40 Gbit/s selector IC and a 50 GHz dynamic frequency divider that were successfully fabricated using the 148-GHz fmax technologies are described.

  • Novel Channel Structures for High Frequency InP-Based HTEFs

    Takatomo ENOKI  Kunihiro ARAI  Tatsushi AKAZAKI  Yasunobu ISHII  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1402-1411

    We discuss delay times derived from the current gain cutoff frequency of a heterostructure field effect transistor and describe three types of novel channel structures for millimeter-wave InP-based HFETs. The first structure discussed is a lattice-matched InGaAs HEMT with high state-of-the art performance. The second structure is an InAs-inserted InGaAs HEMT which harnesses the superior transport properties of InAs. Fabricated devices show high electron mobility of 12,800 cm2/Vs and high transconductance over 1.4 S/mm for a 0.6-µm-gate length. The effective saturation velocity in the device derived from the current gain cutoff frequency in 3.0107 cm/s. The third one is an InGaAs/InP double-channel HFET that utilizes the superior transport properties of InP at a high electric field. Fabricated double-channel devices show kink-free characteristics, high carrier density of 4.51012 cm-2 and high transconductance of 1.3 S/mm for a 0.6-µm-gate length. The estimated effective saturation velocity in these devices is 4.2107 cm/s. Also included is a discussion of the current gain cutoff frequency of ultra-short channel devices.

  • First Room Temperature CW Operation of GaInAsP/InP Surface Emitting Laser

    Toshihiko BABA  Yukiaki YOGO  Katsumasa SUZUKI  Fimio KOYAMA  Kenichi IGA  

     
    LETTER-Opto-Electronics

      Vol:
    E76-C No:9
      Page(s):
    1423-1424

    We have achieved the room temperature cw lasing operation of GaInAsP/InP surface emitting lasers for the first time. By employing a buried heterostructure with 1.3 µm range active region and a MgO/Si heat sink mirror, cw operation was obtained up to 14 with the threshold current of 22 mA.

  • Fabrication of YBa2Cu3O7x-PrBa2Cu3O7y Hetero-Structure by Using a Hollow Cathode Discharge Sputtering System

    Akio KAWABATA  Tadayuki KOBAYASHI  Kouichi USAMI  Toshinari GOTO  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1236-1240

    A sputtering system using dc hollow cathode discharge was developed for the propose of high Tc superconducting devices. Using this system, as-grown superconducting thin films of YBCO have been formed on MgO and SrTiO3 substrates. Influence of the sputtering conditions such as the substrate temperature and discharge gas pressure on the Tc and lattice parameter was investigated. It was found that superconducting films on MgO with Tczero higher than 87 K ere routinely obtained at the pressure of 820 mTorr (5%O2) and substrate temperature of 700 during deposition. The a/b-axis and c-axis oriented YBCO-PBCO hetero-structures were also successfully formed on MgO and SrTiO3 substrates.

  • 88 Optical Matrix Switch Using Silica-Based Planar Lightwave Circuits

    Masayuki OKUNO  Akio SUGITA  Tohru MATSUNAGA  Masao KAWACHI  Yasuji OHMORI  Katsumi KATOH  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:7
      Page(s):
    1215-1223

    A strictly nonblocking 88 matrix switch was designed and fabricated using silica-based planar lightwave circuits (PLC) on a silicon substrate. The average insertion loss was 11 dB in the TE mode and 11.3 dB in the TM mode. The average switch element extinction ratio was 16.7 dB in the TE mode and 17.7 dB in the TM mode. The accumulated crosstalk was estimated to be 7.4 dB in the TE mode and 7.6 dB in the TM mode. The driving power of the phase shifter required for switching was about 0.5 W and the polarization dependence of the switching power was 4%. The switching response time was 1.3 msec. The wavelength range with a switch extinction ratio of over 15 dB was 1.31 µm30 nm.

  • Constant Round Perfect ZKIP of Computational Ability

    Toshiya ITOH  Kouichi SAKURAI  

     
    PAPER-Information Security and Cryptography

      Vol:
    E76-A No:7
      Page(s):
    1225-1233

    In this paper, we show that without any unproven assumption, there exists a "four" move blackbox simulation perfect zero-knowledge interactive proof system of computational ability for any random self-reducible relation R whose domain is in BPP, and that without any unproven assumption, there exists a "four" move blackbox simulation perfect zero-knowledge interactive proof system of knowledge on the prime factorization. These results are optimal in the light of the round complexity, because it is shown that if a relation R has a three move blackbox simulation (perfect) zero-knowledge interactive proof system of computational ability (or of knowledge), then there exists a probabilistic polynomial time algorithm that on input x ∈ {0, 1}*, outputs y such that (x, y)∈R with overwhelming probability if x ∈dom R, and outputs "⊥" with probability 1 if x dom R.

  • Numerical Analysis of Optical Bistability in a Variety of Nonlinear Fabry-Perot Resonators

    Kazuhiko OGUSU  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:6
      Page(s):
    1000-1006

    This paper presents a simple numerical method for calculating the stationary transmission and reflection characteristics of a variety of nonlinear Fably-Perot resonators. In nonlinear media, Maxwell's equations are directly solved by using a numerical integration of complex variables. The input-output characteristics of the Kerr-like nonlinear film without reflection mirrors and with multilayer mirrors have been calculated to demonstrate the usefulness and versatility of the proposed method and to find out resonator configurations exhibiting optical bistability at low incident-power levels. The effects of saturation in the nonlinear permittivity on the input-output characteristics have also been investigated. It has been found that a single nonlinear film with oblique incidence exhibits optical bistability without using reflection mirrors even if the refractive index of the film is low. This offers a simple method for measuring third-order nonlinearities of optical materials.

  • A Characterization of Languages in Constant Round Perfect Zero-Knowledge Interactive Proofs

    Kouichi SAKURAI  

     
    PAPER

      Vol:
    E76-A No:4
      Page(s):
    546-554

    In this paper, we consider a class of the languages that have (constant round) perfect zero-knowledge interactive proofs without assuming any complexity assumptions. Especially, we investigate the interactive protocol with the restricted prover who runs in probabilistic polynomial time and knows the complete factorization as a trapdoor information of the integer associated with the input. We give a condition of the existence of constant round perfect zero-knowledge interactive proofs without assuming any complexity assumptions. The bit commitment based on the quadratic residuosity has an important role in our protocol and the simulation is based on the technique developed by Bellare, Micali, and Ostrovsky in Ref. (9), so call double running process. However, the proof of perfect zero-knowledgeness needs a more powerful simulation technique. Our simulation extracts more knowledge, the complete factorization of the integer associated with the input, from a (cheating) verifier than Bellare-Micali-Ostrovsky's simulation does. Furthermore, our main result implies that Blum integer has a five move perfect zero-knowledge interactive proof without assuming any complexity assumptions. (All previous known zero-knowledge protocols for Blum integer required either unproven cryptographic assumptions or unbounded number of rounds of message exchange.)

821-840hit(858hit)