The search functionality is under construction.

Keyword Search Result

[Keyword] IoT(122hit)

41-60hit(122hit)

  • Highly Reliable Radio Access Scheme by Duplicate Transmissions via Multiple Frequency Channels and Suppressed Useless Transmission under Interference from Other Systems

    Hideya SO  Takafumi FUJITA  Kento YOSHIZAWA  Maiko NAYA  Takashi SHIMIZU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/12/04
      Vol:
    E104-B No:6
      Page(s):
    696-704

    This paper proposes a novel radio access scheme that uses duplicated transmission via multiple frequency channels to achieve mission critical Internet of Things (IoT) services requiring highly reliable wireless communications; the interference constraints that yield the required reliability are revealed. To achieve mission critical IoT services by wireless communication, it is necessary to improve reliability in addition to satisfying the required transmission delay time. Reliability is defined as the packet arrival rate without exceeding the desired transmission delay time. Traffic of the own system and interference from the other systems using the same frequency channel such as unlicensed bands degrades the reliability. One solution is the frequency/time diversity technique. However, these techniques may not achieve the required reliability because of the time taken to achieve the correct reception. This paper proposes a novel scheme that transmits duplicate packets utilizing multiple wireless interfaces over multiple frequency channels. It also proposes a suppressed duplicate transmission (SDT) scheme, which prevents the wastage of radio resources. The proposed scheme achieves the same reliable performance as the conventional scheme but has higher tolerance against interference than retransmission. We evaluate the relationship between the reliability and the occupation time ratio where the interference occupation time ratio is defined as the usage ratio of the frequency resources occupied by the other systems. We reveal the upper bound of the interference occupation time ratio for each frequency channel, which is needed if channel selection control is to achieve the required reliability.

  • Design and Implementation of LoRa-Based Wireless Sensor Network with Embedded System for Smart Agricultural Recycling Rapid Processing Factory

    Chia-Yu WANG  Chia-Hsin TSAI  Sheng-Chung WANG  Chih-Yu WEN  Robert Chen-Hao CHANG  Chih-Peng FAN  

     
    INVITED PAPER

      Pubricized:
    2021/02/25
      Vol:
    E104-D No:5
      Page(s):
    563-574

    In this paper, the effective Long Range (LoRa) based wireless sensor network is designed and implemented to provide the remote data sensing functions for the planned smart agricultural recycling rapid processing factory. The proposed wireless sensor network transmits the sensing data from various sensors, which measure the values of moisture, viscosity, pH, and electrical conductivity of agricultural organic wastes for the production and circulation of organic fertilizers. In the proposed wireless sensor network design, the LoRa transceiver module is used to provide data transmission functions at the sensor node, and the embedded platform by Raspberry Pi module is applied to support the gateway function. To design the cloud data server, the MySQL methodology is applied for the database management system with Apache software. The proposed wireless sensor network for data communication between the sensor node and the gateway supports a simple one-way data transmission scheme and three half-duplex two-way data communication schemes. By experiments, for the one-way data transmission scheme under the condition of sending one packet data every five seconds, the packet data loss rate approaches 0% when 1000 packet data is transmitted. For the proposed two-way data communication schemes, under the condition of sending one packet data every thirty seconds, the average packet data loss rates without and with the data-received confirmation at the gateway side can be 3.7% and 0%, respectively.

  • A Compact TF-Based LC-VCO with Ultra-Low-Power Operation and Supply Pushing Reduction for IoT Applications

    Zheng SUN  Dingxin XU  Hongye HUANG  Zheng LI  Hanli LIU  Bangan LIU  Jian PANG  Teruki SOMEYA  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2020/04/15
      Vol:
    E103-C No:10
      Page(s):
    505-513

    This paper presents a miniaturized transformer-based ultra-low-power (ULP) LC-VCO with embedded supply pushing reduction techniques for IoT applications in 65-nm CMOS process. To reduce the on-chip area, a compact transformer patterned ground shield (PGS) is implemented. The transistors with switchable capacitor banks and associated components are placed underneath the transformer, which further shrinking the on-chip area. To lower the power consumption of VCO, a gm-stacked LC-VCO using the transformer embedded with PGS is proposed. The transformer is designed to provide large inductance to obtain a robust start-up within limited power consumption. Avoiding implementing an off/on-chip Low-dropout regulator (LDO) which requires additional voltage headroom, a low-power supply pushing reduction feedback loop is integrated to mitigate the current variation and thus the oscillation amplitude and frequency can be stabilized. The proposed ULP TF-based LC-VCO achieves phase noise of -114.8dBc/Hz at 1MHz frequency offset and 16kHz flicker corner with a 103µW power consumption at 2.6GHz oscillation frequency, which corresponds to a -193dBc/Hz VCO figure-of-merit (FoM) and only occupies 0.12mm2 on-chip area. The supply pushing is reduced to 2MHz/V resulting in a -50dBc spur, while 5MHz sinusoidal ripples with 50mVPP are added on the DC supply.

  • Design of Switched-Capacitor Voltage Boost Converter for Low-Voltage and Low-Power Energy Harvesting Systems Open Access

    Tetsuya HIROSE  Yuichiro NAKAZAWA  

     
    INVITED PAPER-Electronic Circuits

      Pubricized:
    2020/05/20
      Vol:
    E103-C No:10
      Page(s):
    446-457

    This paper discusses and elaborates an analytical model of a multi-stage switched-capacitor (SC) voltage boost converter (VBC) for low-voltage and low-power energy harvesting systems, because the output impedance of the VBC, which is derived from the analytical model, plays an important role in the VBC's performance. In our proposed method, we focus on currents flowing into input and output terminals of each stage and model the VBCs using switching frequency f, charge transfer capacitance CF, load capacitance CL, and process dependent parasitic capacitance's parameter k. A comparison between simulated and calculated results showed that our model can estimate the output impedance of the VBC accurately. Our model is useful for comparing the relative merits of different types of multi-stage SC VBCs. Moreover, we demonstrate the performance of a prototype SC VBC and energy harvesting system using the SC VBC to show the effectiveness and feasibility of our proposed design guideline.

  • Congestion-Adaptive and Deadline-Aware Scheduling for Connected Car Services over Mobile Networks Open Access

    Nobuhiko ITOH  Takanori IWAI  Ryogo KUBO  

     
    PAPER-Network

      Pubricized:
    2020/04/21
      Vol:
    E103-B No:10
      Page(s):
    1117-1126

    Road traffic collisions are an extremely serious and often fatal issue. One promising approach to mitigate such collisions is the use of connected car services that share road traffic information obtained from vehicles and cameras over mobile networks. In connected car services, it is important for data chunks to arrive at a destination node within a certain deadline constraint. In this paper, we define a flow from a vehicle (or camera) to the same vehicle (or camera) via an MEC server, as a mission critical (MC) flow, and call a deadline of the MC flow the MC deadline. Our research objective is to achieve a higher arrival ratio within the MC deadline for the MC flow that passes through both the radio uplink and downlink. We previously developed a deadline-aware scheduler with consideration for quality fluctuation (DAS-QF) that considers chunk size and a certain deadline constraint in addition to radio quality and utilizes these to prioritize users such that the deadline constraints are met. However, this DAS-QF does not consider that the congestion levels of evolved NodeB (eNB) differ depending on the eNB location, or that the uplink congestion level differs from the downlink congestion level in the same eNB. Therefore, in the DAS-QF, some data chunks of a MC flow are discarded in the eNB when they exceed either the uplink or downlink deadline in congestion, even if they do not exceed the MC deadline. In this paper, to reduce the eNB packet drop probability due to exceeding either the uplink and downlink deadline, we propose a deadline coordination function (DCF) that adaptively sets each of the uplink and downlink deadlines for the MC flow according to the congestion level of each link. Simulation results show that the DAS-QF with DCF offers higher arrival ratios within the MC deadline compared to DAS-QF on its own

  • Evaluation the Redundancy of the IoT System Based on Individual Sensing Probability

    Ryuichi TAKAHASHI  

     
    PAPER-Formal Approaches

      Pubricized:
    2020/05/14
      Vol:
    E103-D No:8
      Page(s):
    1783-1793

    In IoT systems, data acquired by many sensors are required. However, since sensor operation depends on the actual environment, it is important to ensure sensor redundancy to improve system reliability in IoT systems. To evaluate the safety of the system, it is important to estimate the achievement probability of the function based on the sensing probability. In this research, we proposed a method to automatically generate a PRISM model from the sensor configuration of the target system and calculate and verify the function achievement probability in the assumed environment. By designing and evaluating iteratively until the target achievement probability is reached, the reliability of the system can be estimated at the initial design phase. This method reduces the possibility that the lack of reliability will be found after implementation and the redesign accompanying it will occur.

  • 1-day, 2 Countries — A Study on Consumer IoT Device Vulnerability Disclosure and Patch Release in Japan and the United States

    Asuka NAKAJIMA  Takuya WATANABE  Eitaro SHIOJI  Mitsuaki AKIYAMA  Maverick WOO  

     
    PAPER-Network and System Security

      Pubricized:
    2020/03/24
      Vol:
    E103-D No:7
      Page(s):
    1524-1540

    With our ever increasing dependence on computers, many governments around the world have started to investigate strengthening the regulations on vulnerabilities and their lifecycle management. Although many previous works have studied this problem space for mainstream software packages and web applications, relatively few have studied this for consumer IoT devices. As our first step towards filling this void, this paper presents a pilot study on the vulnerability disclosures and patch releases of three prominent consumer IoT vendors in Japan and three in the United States. Our goals include (i) characterizing the trends and risks in the vulnerability lifecycle management of consumer IoT devices using accurate long-term data, and (ii) identifying problems, challenges, and potential approaches for future studies of this problem space. To this end, we collected all published vulnerabilities and patches related to the consumer IoT products by the included vendors between 2006 and 2017; then, we analyzed our dataset from multiple perspectives, such as the severity of the included vulnerabilities and the timing of the included patch releases with respect to the corresponding disclosures and exploits. Our work has uncovered several important findings that may inform future studies. These findings include (i) a stark contrast between how the vulnerabilities in our dataset were disclosed in the two markets, (ii) three alarming practices by the included vendors that may significantly increase the risk of 1-day exploits for customers, and (iii) challenges in data collection including crawling automation and long-term data availability. For each finding, we also provide discussions on its consequences and/or potential migrations or suggestions.

  • Extended Inter-Device Digital Rights Sharing and Transfer Based on Device-Owner Equality Verification Using Homomorphic Encryption

    Yoshihiko OMORI  Takao YAMASHITA  

     
    PAPER-Information Network

      Pubricized:
    2020/03/13
      Vol:
    E103-D No:6
      Page(s):
    1339-1354

    In this paper, we propose homomorphic encryption based device owner equality verification (HE-DOEV), a new method to verify whether the owners of two devices are the same. The proposed method is expected to be used for credential sharing among devices owned by the same user. Credential sharing is essential to improve the usability of devices with hardware-assisted trusted environments, such as a secure element (SE) and a trusted execution environment (TEE), for securely storing credentials such as private keys. In the HE-DOEV method, we assume that the owner of every device is associated with a public key infrastructure (PKI) certificate issued by an identity provider (IdP), where a PKI certificate is used to authenticate the owner of a device. In the HE-DOEV method, device owner equality is collaboratively verified by user devices and IdPs that issue PKI certificates to them. The HE-DOEV method verifies device owner equality under the condition where multiple IdPs can issue PKI certificates to user devices. In addition, it can verify the equality of device owners without disclosing to others any privacy-related information such as personally identifiable information and long-lived identifiers managed by an entity. The disclosure of privacy-related information is eliminated by using homomorphic encryption. We evaluated the processing performance of a server needed for an IdP in the HE-DOEV method. The evaluation showed that the HE-DOEV method can provide a DOEV service for 100 million users by using a small-scale system in terms of the number of servers.

  • A True Random Number Generator Method Embedded in Wireless Communication Systems

    Toshinori SUZUKI  Masahiro KAMINAGA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:4
      Page(s):
    686-694

    To increase the number of wireless devices such as mobile or IoT terminals, cryptosystems are essential for secure communications. In this regard, random number generation is crucial because the appropriate function of cryptosystems relies on it to work properly. This paper proposes a true random number generator (TRNG) method capable of working in wireless communication systems. By embedding a TRNG in such systems, no additional analog circuits are required and working conditions can be limited as long as wireless communication systems are functioning properly, making TRNG method cost-effective. We also present some theoretical background and considerations. We next conduct experimental verification, which strongly supports the viability of the proposed method.

  • Essential Roles, Challenges and Development of Embedded MCU Micro-Systems to Innovate Edge Computing for the IoT/AI Age Open Access

    Takashi KONO  Yasuhiko TAITO  Hideto HIDAKA  

     
    INVITED PAPER-Integrated Electronics

      Vol:
    E103-C No:4
      Page(s):
    132-143

    Embedded system approaches to edge computing in IoT implementations are proposed and discussed. Rationales of edge computing and essential core capabilities for IoT data supply innovation are identified. Then, innovative roles and development of MCU and embedded flash memory are illustrated by technology and applications, expanding from CPS to big-data and nomadic/autonomous elements of IoT requirements. Conclusively, a technology roadmap construction specific to IoT is proposed.

  • IoT Malware Analysis and New Pattern Discovery Through Sequence Analysis Using Meta-Feature Information

    Chun-Jung WU  Shin-Ying HUANG  Katsunari YOSHIOKA  Tsutomu MATSUMOTO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/08/05
      Vol:
    E103-B No:1
      Page(s):
    32-42

    A drastic increase in cyberattacks targeting Internet of Things (IoT) devices using telnet protocols has been observed. IoT malware continues to evolve, and the diversity of OS and environments increases the difficulty of executing malware samples in an observation setting. To address this problem, we sought to develop an alternative means of investigation by using the telnet logs of IoT honeypots and analyzing malware without executing it. In this paper, we present a malware classification method based on malware binaries, command sequences, and meta-features. We employ both unsupervised or supervised learning algorithms and text-mining algorithms for handling unstructured data. Clustering analysis is applied for finding malware family members and revealing their inherent features for better explanation. First, the malware binaries are grouped using similarity analysis. Then, we extract key patterns of interaction behavior using an N-gram model. We also train a multiclass classifier to identify IoT malware categories based on common infection behavior. For misclassified subclasses, second-stage sub-training is performed using a file meta-feature. Our results demonstrate 96.70% accuracy, with high precision and recall. The clustering results reveal variant attack vectors and one denial of service (DoS) attack that used pure Linux commands.

  • Interworking Layer of Distributed MQTT Brokers

    Ryohei BANNO  Jingyu SUN  Susumu TAKEUCHI  Kazuyuki SHUDO  

     
    PAPER-Information Network

      Pubricized:
    2019/07/30
      Vol:
    E102-D No:12
      Page(s):
    2281-2294

    MQTT is one of the promising protocols for various data exchange in IoT environments. Typically, those environments have a characteristic called “edge-heavy”, which means that things at the network edge generate a massive volume of data with high locality. For handling such edge-heavy data, an architecture of placing multiple MQTT brokers at the network edges and making them cooperate with each other is quite effective. It can provide higher throughput and lower latency, as well as reducing consumption of cloud resources. However, under this kind of architecture, heterogeneity could be a vital issue. Namely, an appropriate product of MQTT broker could vary according to the different environment of each network edge, even though different products are hard to cooperate due to the MQTT specification providing no interoperability between brokers. In this paper, we propose Interworking Layer of Distributed MQTT brokers (ILDM), which enables arbitrary kinds of MQTT brokers to cooperate with each other. ILDM, designed as a generic mechanism independent of any specific cooperation algorithm, provides APIs to facilitate development of a variety of algorithms. By using the APIs, we also present two basic cooperation algorithms. To evaluate the usefulness of ILDM, we introduce a benchmark system which can be used for both a single broker and multiple brokers. Experimental results show that the throughput of five brokers running together by ILDM is improved 4.3 times at maximum than that of a single broker.

  • A Cross-Platform Study on Emerging Malicious Programs Targeting IoT Devices Open Access

    Tao BAN  Ryoichi ISAWA  Shin-Ying HUANG  Katsunari YOSHIOKA  Daisuke INOUE  

     
    LETTER-Cybersecurity

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1683-1685

    Along with the proliferation of IoT (Internet of Things) devices, cyberattacks towards them are on the rise. In this paper, aiming at efficient precaution and mitigation of emerging IoT cyberthreats, we present a multimodal study on applying machine learning methods to characterize malicious programs which target multiple IoT platforms. Experiments show that opcode sequences obtained from static analysis and API sequences obtained by dynamic analysis provide sufficient discriminant information such that IoT malware can be classified with near optimal accuracy. Automated and accelerated identification and mitigation of new IoT cyberthreats can be enabled based on the findings reported in this study.

  • Smart Ambulance Approach Alarm System Using Smartphone

    Toru KOBAYASHI  Fukuyoshi KIMURA  Tetsuo IMAI  Kenichi ARAI  

     
    LETTER-Notification System

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1689-1692

    In order to operate an ambulance efficiently, we developed a Smart Ambulance Approach Alarm System using smartphone, by notifying the approach of an ambulance to other vehicles on public roads. The position information of ambulances has not been opened in view of development costs and privacy protection. Therefore, our study opens the position information inexpensively by loading commodity smartphones, not special devices, into ambulances. The position information is made to be open as minimum necessary information by our developed cloud server application, considering dynamic state of other vehicles on public roads and privacy of ambulance service users. We tested the functional efficiency of this system by the demonstration experiment on public roads.

  • Physical Cell ID Detection Probabilities Using Frequency Domain PVS Transmit Diversity for NB-IoT Radio Interface

    Aya SHIMURA  Mamoru SAWAHASHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1477-1489

    This paper proposes frequency domain precoding vector switching (PVS) transmit diversity for synchronization signals to achieve fast physical cell identity (PCID) detection for the narrowband (NB)-Internet-of-Things (IoT) radio interface. More specifically, we propose localized and distributed frequency domain PVS transmit diversity schemes for the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS), and NPSS and NSSS detection methods including a frequency offset estimation method suitable for frequency domain PVS transmit diversity at the receiver in a set of user equipment (UE). We conduct link-level simulations to compare the detection probabilities of NPSS and NSSS, i.e., PCID using the proposed frequency domain PVS transmit diversity schemes, to those using the conventional time domain PVS transmit diversity scheme. The results show that both the distributed and localized frequency domain PVS transmit diversity schemes achieve a PCID detection probability almost identical to that of the time domain PVS transmit diversity scheme when the effect of the frequency offset due to the frequency error of the UE temperature compensated crystal oscillator (TCXO) is not considered. We also show that for a maximum frequency offset of less than approximately 8 kHz, localized PVS transmit diversity achieves almost the same PCID detection probability. It also achieves a higher PCID detection probability than one-antenna transmission although it is degraded compared to the time domain PVS transmit diversity when the maximum frequency offset is greater than approximately 10 kHz.

  • High-Performance End-to-End Integrity Verification on Big Data Transfer

    Eun-Sung JUNG  Si LIU  Rajkumar KETTIMUTHU  Sungwook CHUNG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/04/24
      Vol:
    E102-D No:8
      Page(s):
    1478-1488

    The scale of scientific data generated by experimental facilities and simulations in high-performance computing facilities has been proliferating with the emergence of IoT-based big data. In many cases, this data must be transmitted rapidly and reliably to remote facilities for storage, analysis, or sharing, for the Internet of Things (IoT) applications. Simultaneously, IoT data can be verified using a checksum after the data has been written to the disk at the destination to ensure its integrity. However, this end-to-end integrity verification inevitably creates overheads (extra disk I/O and more computation). Thus, the overall data transfer time increases. In this article, we evaluate strategies to maximize the overlap between data transfer and checksum computation for astronomical observation data. Specifically, we examine file-level and block-level (with various block sizes) pipelining to overlap data transfer and checksum computation. We analyze these pipelining approaches in the context of GridFTP, a widely used protocol for scientific data transfers. Theoretical analysis and experiments are conducted to evaluate our methods. The results show that block-level pipelining is effective in maximizing the overlap mentioned above, and can improve the overall data transfer time with end-to-end integrity verification by up to 70% compared to the sequential execution of transfer and checksum, and by up to 60% compared to file-level pipelining.

  • MF-CNN: Traffic Flow Prediction Using Convolutional Neural Network and Multi-Features Fusion

    Di YANG  Songjiang LI  Zhou PENG  Peng WANG  Junhui WANG  Huamin YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/05/20
      Vol:
    E102-D No:8
      Page(s):
    1526-1536

    Accurate traffic flow prediction is the precondition for many applications in Intelligent Transportation Systems, such as traffic control and route guidance. Traditional data driven traffic flow prediction models tend to ignore traffic self-features (e.g., periodicities), and commonly suffer from the shifts brought by various complex factors (e.g., weather and holidays). These would reduce the precision and robustness of the prediction models. To tackle this problem, in this paper, we propose a CNN-based multi-feature predictive model (MF-CNN) that collectively predicts network-scale traffic flow with multiple spatiotemporal features and external factors (weather and holidays). Specifically, we classify traffic self-features into temporal continuity as short-term feature, daily periodicity and weekly periodicity as long-term features, then map them to three two-dimensional spaces, which each one is composed of time and space, represented by two-dimensional matrices. The high-level spatiotemporal features learned by CNNs from the matrices with different time lags are further fused with external factors by a logistic regression layer to derive the final prediction. Experimental results indicate that the MF-CNN model considering multi-features improves the predictive performance compared to five baseline models, and achieves the trade-off between accuracy and efficiency.

  • Experimental Evaluation of a Novel Up-Link NOMA System for IoT Communication Equipping Repetition Transmission and Receive Diversity

    Masafumi MORIYAMA  Kenichi TAKIZAWA  Masayuki OODO  Hayato TEZUKA  Fumihide KOJIMA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1467-1476

    The number of Internet-of-Things (IoT) devices will increase rapidly. In next-generation mobile communication systems, a base station (BS) must effectively accommodate massive numbers of IoT devices. To address this problem, we have proposed a novel up-link non-orthogonal multiple access (NOMA) system that can also be utilized for low latency communication. We have developed and evaluated the system through computer simulation. This paper describes experiments conducted on a prototype system in actual environments. The paper shows results of the experiments when 3 fixed user equipments (UEs) and 2 mobile UEs transmitted signals simultaneously to a BS and then the BS separated superimposed signals using successive interference cancellation (SIC). We also evaluated repetition transmission (RT) and space receive diversity (SD) techniques employed to enhance the signal separation performance for NOMA systems. The results of the experiments confirm that the system using neither SD nor RT could separate 3.5 UEs' signals on average while employing either SD or RT could make the number increase to 4.1 and 4.0, respectively. When both SD and RT were employed, the number rose to 4.4.

  • An FSK Inductive-Coupling Transceiver Using 60mV 0.64fJ/bit 0.0016mm2 Load-Modulated Transmitter and LC-Oscillator-Based Receiver in 65nm CMOS for Energy-Budget-Unbalanced Application Open Access

    Kenya HAYASHI  Shigeki ARATA  Ge XU  Shunya MURAKAMI  Cong Dang BUI  Atsuki KOBAYASHI  Kiichi NIITSU  

     
    BRIEF PAPER

      Vol:
    E102-C No:7
      Page(s):
    585-589

    This work presents an FSK inductive-coupling transceiver using a load-modulated transmitter and LC-oscillator-based receiver for energy-budget-unbalanced applications. By introducing the time-domain load modulated transmitter for FSK instead of the conventional current-driven scheme, energy reduction of the transmitter side is possible. For verifying the proposed scheme, a test chip was fabricated in 65nm CMOS, and two chips were stacked for verifying the inter-chip communication. The measurement results show 0.64fJ/bit transmitter power consumption while its input voltage is 60mV, and the communication distance is 150μm. The footprint of the transmitter is 0.0016mm2.

  • Combining 3D Convolutional Neural Networks with Transfer Learning by Supervised Pre-Training for Facial Micro-Expression Recognition

    Ruicong ZHI  Hairui XU  Ming WAN  Tingting LI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/01/29
      Vol:
    E102-D No:5
      Page(s):
    1054-1064

    Facial micro-expression is momentary and subtle facial reactions, and it is still challenging to automatically recognize facial micro-expression with high accuracy in practical applications. Extracting spatiotemporal features from facial image sequences is essential for facial micro-expression recognition. In this paper, we employed 3D Convolutional Neural Networks (3D-CNNs) for self-learning feature extraction to represent facial micro-expression effectively, since the 3D-CNNs could well extract the spatiotemporal features from facial image sequences. Moreover, transfer learning was utilized to deal with the problem of insufficient samples in the facial micro-expression database. We primarily pre-trained the 3D-CNNs on normal facial expression database Oulu-CASIA by supervised learning, then the pre-trained model was effectively transferred to the target domain, which was the facial micro-expression recognition task. The proposed method was evaluated on two available facial micro-expression datasets, i.e. CASME II and SMIC-HS. We obtained the overall accuracy of 97.6% on CASME II, and 97.4% on SMIC, which were 3.4% and 1.6% higher than the 3D-CNNs model without transfer learning, respectively. And the experimental results demonstrated that our method achieved superior performance compared to state-of-the-art methods.

41-60hit(122hit)