The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LINE(2699hit)

1-20hit(2699hit)

  • Robust Bilinear Form Identification: A Subgradient Method with Geometrically Decaying Stepsize in the Presence of Heavy-Tailed Noise Open Access

    Guowei YANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:10
      Page(s):
    627-632

    This paper delves into the utilisation of the subgradient method with geometrically decaying stepsize for Bilinear Form Identification. We introduce the iterative Wiener Filter, an l2 regression method, and highlight its limitations when confronted with noise, particularly heavy-tailed noise. To address these challenges, the paper suggests employing the l1 regression method with a subgradient method utilizing a geometrically decaying step size. The effectiveness of this approach is compared to existing methods, including the ALS algorithem. The study demonstrates that the l1 algorithm, especially when paired with the proposed subgradient method, excels in stability and accuracy under conditions of heavy-tailed noise. Additionally, the paper introduces the standard rounding procedure and the S-outlier bound as relaxations of traditional assumptions. Numerical experiments provide support and validation for the presented results.

  • Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise Open Access

    Yoon Hak KIM  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:9
      Page(s):
    1274-1277

    We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.

  • Evaluation of Multi-Valued Data Transmission in Two-Dimensional Symbol Mapping using Linear Mixture Model Open Access

    Yosuke IIJIMA  Atsunori OKADA  Yasushi YUMINAKA  

     
    PAPER

      Pubricized:
    2024/05/09
      Vol:
    E107-D No:8
      Page(s):
    976-984

    In high-speed data communication systems, it is important to evaluate the quality of the transmitted signal at the receiver. At a high-speed data rate, the transmission line characteristics act as a high-frequency attenuator and contribute to the intersymbol interference (ISI) at the receiver. To evaluate ISI conditions, eye diagrams are widely used to analyze signal quality and visualize the ISI effect as an eye-opening rate. Various types of on-chip eye-opening monitors (EOM) have been proposed to adjust waveform-shaping circuits. However, the eye diagram evaluation of multi-valued signaling becomes more difficult than that of binary transmission because of the complicated signal transition patterns. Moreover, in severe ISI situations where the eye is completely closed, eye diagram evaluation does not work well. This paper presents a novel evaluation method using Two-dimensional(2D) symbol mapping and a linear mixture model (LMM) for multi-valued data transmission. In our proposed method, ISI evaluation can be realized by 2D symbol mapping, and an efficient quantitative analysis can be realized using the LMM. An experimental demonstration of four leveled pulse amplitude modulation(PAM-4) data transmission using a Cat5e cable 100 m is presented. The experimental results show that the proposed method can extract features of the ISI effect even though the eye is completely closed in the server condition.

  • An Investigation on LP Decoding of Short Binary Linear Codes With the Subgradient Method Open Access

    Haiyang LIU  Xiaopeng JIAO  Lianrong MA  

     
    LETTER-Coding Theory

      Pubricized:
    2023/11/21
      Vol:
    E107-A No:8
      Page(s):
    1395-1399

    In this letter, we investigate the application of the subgradient method to design efficient algorithm for linear programming (LP) decoding of binary linear codes. A major drawback of the original formulation of LP decoding is that the description complexity of the feasible region is exponential in the check node degrees of the code. In order to tackle the problem, we propose a processing technique for LP decoding with the subgradient method, whose complexity is linear in the check node degrees. Consequently, a message-passing type decoding algorithm can be obtained, whose per-iteration complexity is extremely low. Moreover, if the algorithm converges to a valid codeword, it is guaranteed to be a maximum likelihood codeword. Simulation results on several binary linear codes with short lengths suggest that the performances of LP decoding based on the subgradient method and the state-of-art LP decoding implementation approach are comparable.

  • Search for 9-Variable Boolean Functions with the Optimal Algebraic Immunity-Resiliency Trade-Off and High Nonlinearity Open Access

    Yueying LOU  Qichun WANG  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2024/03/28
      Vol:
    E107-A No:8
      Page(s):
    1382-1385

    Boolean functions play an important role in symmetric ciphers. One of important open problems on Boolean functions is determining the maximum possible resiliency order of n-variable Boolean functions with optimal algebraic immunity. In this letter, we search Boolean functions in the rotation symmetric class, and determine the maximum possible resiliency order of 9-variable Boolean functions with optimal algebraic immunity. Moreover, the maximum possible nonlinearity of 9-variable rotation symmetric Boolean functions with optimal algebraic immunity-resiliency trade-off is determined to be 224.

  • Analytical Model of Maximum Operating Frequency of Class-D ZVS Inverter with Linearized Parasitic Capacitance and any Duty Ratio Open Access

    Yi XIONG  Senanayake THILAK  Yu YONEZAWA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Circuit Theory

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:8
      Page(s):
    1115-1126

    This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.

  • Controlling Chaotic Resonance with Extremely Local-Specific Feedback Signals Open Access

    Takahiro IINUMA  Yudai EBATO  Sou NOBUKAWA  Nobuhiko WAGATSUMA  Keiichiro INAGAKI  Hirotaka DOHO  Teruya YAMANISHI  Haruhiko NISHIMURA  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2024/01/17
      Vol:
    E107-A No:8
      Page(s):
    1106-1114

    Stochastic resonance is a representative phenomenon in which the degree of synchronization with a weak input signal is enhanced using additive stochastic noise. In systems with multiple chaotic attractors, the chaos-chaos intermittent behavior in attractor-merging bifurcation induces chaotic resonance, which is similar to the stochastic resonance and has high sensitivity. However, controlling chaotic resonance is difficult because it requires adjusting the internal parameters from the outside. The reduced-region-of-orbit (RRO) method, which controls the attractor-merging bifurcation using an external feedback signal, is employed to overcome this issue. However, the lower perturbation of the feedback signal requires further improvement for engineering applications. This study proposed an RRO method with more sophisticated and less perturbed feedback signals, called the double-Gaussian-filtered RRO (DG-RRO) method. The inverse sign of the map function and double Gaussian filters were used to improve the local specification, i.e., the concentration around the local maximum/minimum in the feedback signals, called the DG-RRO feedback signals. Owing to their fine local specification, these signals achieved the attractor-merging bifurcation with significantly smaller feedback perturbation than that in the conventional RRO method. Consequently, chaotic resonance was induced through weak feedback perturbation. It exhibited greater synchronization against weak input signals than that induced by the conventional RRO feedback signal and sustained the same level of response frequency range as that of the conventional RRO method. These advantages may pave the way for utilizing chaotic resonance in engineering scenarios where the stochastic resonance has been applied.

  • Backpressure Learning-Based Data Transmission Reliability-Aware Self-Organizing Networking for Power Line Communication in Distribution Network Open Access

    Zhan SHI  

     
    PAPER-Systems and Control

      Pubricized:
    2024/01/15
      Vol:
    E107-A No:8
      Page(s):
    1076-1084

    Power line communication (PLC) provides a flexible-access, wide-distribution, and low-cost communication solution for distribution network services. However, the PLC self-organizing networking in distribution network faces several challenges such as diversified data transmission requirements guarantee, the contradiction between long-term constraints and short-term optimization, and the uncertainty of global information. To address these challenges, we propose a backpressure learning-based data transmission reliability-aware self-organizing networking algorithm to minimize the weighted sum of node data backlogs under the long-term transmission reliability constraint. Specifically, the minimization problem is transformed by the Lyapunov optimization and backpressure algorithm. Finally, we propose a backpressure and data transmission reliability-aware state-action-reward-state-action (SARSA)-based self-organizing networking strategy to realize the PLC networking optimization. Simulation results demonstrate that the proposed algorithm has superior performances of data backlogs and transmission reliability.

  • Two Classes of Optimal Ternary Cyclic Codes with Minimum Distance Four Open Access

    Chao HE  Xiaoqiong RAN  Rong LUO  

     
    LETTER-Information Theory

      Pubricized:
    2023/10/16
      Vol:
    E107-A No:7
      Page(s):
    1049-1052

    Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms. Let C(t,e) denote the cyclic code with two nonzero αt and αe, where α is a generator of 𝔽*3m. In this letter, we investigate the ternary cyclic codes with parameters [3m - 1, 3m - 1 - 2m, 4] based on some results proposed by Ding and Helleseth in 2013. Two new classes of optimal ternary cyclic codes C(t,e) are presented by choosing the proper t and e and determining the solutions of certain equations over 𝔽3m.

  • Real-Time Monitoring Systems That Provide M2M Communication between Machines Open Access

    Ya ZHONG  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Pubricized:
    2023/10/17
      Vol:
    E107-A No:7
      Page(s):
    1019-1026

    Artificial intelligence and the introduction of Internet of Things technologies have benefited from technological advances and new automated computer system technologies. Eventually, it is now possible to integrate them into a single offline industrial system. This is accomplished through machine-to-machine communication, which eliminates the human factor. The purpose of this article is to examine security systems for machine-to-machine communication systems that rely on identification and authentication algorithms for real-time monitoring. The article investigates security methods for quickly resolving data processing issues by using the Security operations Center’s main machine to identify and authenticate devices from 19 different machines. The results indicate that when machines are running offline and performing various tasks, they can be exposed to data leaks and malware attacks by both the individual machine and the system as a whole. The study looks at the operation of 19 computers, 7 of which were subjected to data leakage and malware attacks. AnyLogic software is used to create visual representations of the results using wireless networks and algorithms based on previously processed methods. The W76S is used as a protective element within intelligent sensors due to its built-in memory protection. For 4 machines, the data leakage time with malware attacks was 70 s. For 10 machines, the duration was 150 s with 3 attacks. Machine 15 had the longest attack duration, lasting 190 s and involving 6 malware attacks, while machine 19 had the shortest attack duration, lasting 200 s and involving 7 malware attacks. The highest numbers indicated that attempting to hack a system increased the risk of damaging a device, potentially resulting in the entire system with connected devices failing. Thus, illegal attacks by attackers using malware may be identified over time, and data processing effects can be prevented by intelligent control. The results reveal that applying identification and authentication methods using a protocol increases cyber-physical system security while also allowing real-time monitoring of offline system security.

  • Constructions of Boolean Functions with Five-Valued Walsh Spectra and Their Applications Open Access

    Yingzhong ZHANG  Xiaoni DU  Wengang JIN  Xingbin QIAO  

     
    PAPER-Coding Theory

      Pubricized:
    2023/10/31
      Vol:
    E107-A No:7
      Page(s):
    997-1002

    Boolean functions with a few Walsh spectral values have important applications in sequence ciphers and coding theory. In this paper, we first construct a class of Boolean functions with at most five-valued Walsh spectra by using the secondary construction of Boolean functions, in particular, plateaued functions are included. Then, we construct three classes of Boolean functions with five-valued Walsh spectra using Kasami functions and investigate the Walsh spectrum distributions of the new functions. Finally, three classes of minimal linear codes with five-weights are obtained, which can be used to design secret sharing scheme with good access structures.

  • A 0.13 mJ/Prediction CIFAR-100 Fully Synthesizable Raster-Scan-Based Wired-Logic Processor in 16-nm FPGA Open Access

    Dongzhu LI  Zhijie ZHAN  Rei SUMIKAWA  Mototsugu HAMADA  Atsutake KOSUGE  Tadahiro KURODA  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-C No:6
      Page(s):
    155-162

    A 0.13mJ/prediction with 68.6% accuracy wired-logic deep neural network (DNN) processor is developed in a single 16-nm field-programmable gate array (FPGA) chip. Compared with conventional von-Neumann architecture DNN processors, the energy efficiency is greatly improved by eliminating DRAM/BRAM access. A technical challenge for conventional wired-logic processors is the large amount of hardware resources required for implementing large-scale neural networks. To implement a large-scale convolutional neural network (CNN) into a single FPGA chip, two technologies are introduced: (1) a sparse neural network known as a non-linear neural network (NNN), and (2) a newly developed raster-scan wired-logic architecture. Furthermore, a novel high-level synthesis (HLS) technique for wired-logic processor is proposed. The proposed HLS technique enables the automatic generation of two key components: (1) Verilog-hardware description language (HDL) code for a raster-scan-based wired-logic processor and (2) test bench code for conducting equivalence checking. The automated process significantly mitigates the time and effort required for implementation and debugging. Compared with the state-of-the-art FPGA-based processor, 238 times better energy efficiency is achieved with only a slight decrease in accuracy on the CIFAR-100 task. In addition, 7 times better energy efficiency is achieved compared with the state-of-the-art network-optimized application-specific integrated circuit (ASIC).

  • A Case Study on Recommender Systems in Online Conferences: Behavioral Analysis through A/B Testing Open Access

    Ayano OKOSO  Keisuke OTAKI  Yoshinao ISHII  Satoshi KOIDE  

     
    PAPER

      Pubricized:
    2024/01/16
      Vol:
    E107-D No:5
      Page(s):
    650-658

    Owing to the COVID-19 pandemic, many academic conferences are now being held online. Our study focuses on online video conferences, where participants can watch pre-recorded embedded videos on a conference website. In online video conferences, participants must efficiently find videos that match their interests among many candidates. There are few opportunities to encounter videos that they may not have planned to watch but may be of interest to them unless participants actively visit the conference. To alleviate these problems, the introduction of a recommender system seems promising. In this paper, we implemented typical recommender systems for the online video conference with 4,000 participants and analyzed users’ behavior through A/B testing. Our results showed that users receiving recommendations based on collaborative filtering had a higher continuous video-viewing rate and spent longer on the website than those without recommendations. In addition, these users were exposed to broader videos and tended to view more from categories that are usually less likely to view together. Furthermore, the impact of the recommender system was most significant among users who spent less time on the site.

  • Analysis of Optical Power Splitter with Resonator Structure Constructed by Two-Dimensional MDM Plasmonic Waveguide Open Access

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2023/12/07
      Vol:
    E107-C No:5
      Page(s):
    141-145

    An efficient optical power splitter constructed by a metal-dielectric-metal plasmonic waveguide with a resonator structure has been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator structure consists of input/output waveguides and a narrow waveguide with a T-junction. The power splitter with the resonator structure is expressed by an equivalent transmission-line circuit. We can find that the transmittance and reflectance calculated by the FD-TD method and the equivalent circuit are matched when the difference in width between the input/output waveguides and the narrow waveguide is small. It is also shown that the transmission wavelength can be adjusted by changing the narrow waveguide lengths that satisfy the impedance matching condition in the equivalent circuit.

  • Output Feedback Ultimate Boundedness Control with Decentralized Event-Triggering Open Access

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/11/10
      Vol:
    E107-A No:5
      Page(s):
    770-778

    In cyber-physical systems (CPSs) that interact between physical and information components, there are many sensors that are connected through a communication network. In such cases, the reduction of communication costs is important. Event-triggered control that the control input is updated only when the measured value is widely changed is well known as one of the control methods of CPSs. In this paper, we propose a design method of output feedback controllers with decentralized event-triggering mechanisms, where the notion of uniformly ultimate boundedness is utilized as a control specification. Using this notion, we can guarantee that the state stays within a certain set containing the origin after a certain time, which depends on the initial state. As a result, the number of times that the event occurs can be decreased. First, the design problem is formulated. Next, this problem is reduced to a BMI (bilinear matrix inequality) optimization problem, which can be solved by solving multiple LMI (linear matrix inequality) optimization problems. Finally, the effectiveness of the proposed method is presented by a numerical example.

  • Extension of Counting LTL and Its Application to a Path Planning Problem for Heterogeneous Multi-Robot Systems Open Access

    Kotaro NAGAE  Toshimitsu USHIO  

     
    INVITED PAPER

      Pubricized:
    2023/10/02
      Vol:
    E107-A No:5
      Page(s):
    752-761

    We address a path planning problem for heterogeneous multi-robot systems under specifications consisting of temporal constraints and routing tasks such as package delivery services. The robots are partitioned into several groups based on their dynamics and specifications. We introduce a concise description of such tasks, called a work, and extend counting LTL to represent such specifications. We convert the problem into an ILP problem. We show that the number of variables in the ILP problem is fewer than that of the existing method using cLTL+. By simulation, we show that the computation time of the proposed method is faster than that of the existing method.

  • Conversational AI as a Facilitator Improves Participant Engagement and Problem-Solving in Online Discussion: Sharing Evidence from Five Cities in Afghanistan Open Access

    Sofia SAHAB  Jawad HAQBEEN  Takayuki ITO  

     
    PAPER

      Pubricized:
    2024/01/15
      Vol:
    E107-D No:4
      Page(s):
    434-442

    Despite the increasing use of conversational artificial intelligence (AI) in online discussion environments, few studies explore the application of AI as a facilitator in forming problem-solving debates and influencing opinions in cross-venue scenarios, particularly in diverse and war-ravaged countries. This study aims to investigate the impact of AI on enhancing participant engagement and collaborative problem-solving in online-mediated discussion environments, especially in diverse and heterogeneous discussion settings, such as the five cities in Afghanistan. We seek to assess the extent to which AI participation in online conversations succeeds by examining the depth of discussions and participants' contributions, comparing discussions facilitated by AI with those not facilitated by AI across different venues. The results are discussed with respect to forming and changing opinions with and without AI-mediated communication. The findings indicate that the number of opinions generated in AI-facilitated discussions significantly differs from discussions without AI support. Additionally, statistical analyses reveal quantitative disparities in online discourse sentiments when conversational AI is present compared to when it is absent. These findings contribute to a better understanding of the role of AI-mediated discussions and offer several practical and social implications, paving the way for future developments and improvements.

  • Overfitting Problem of ANN- and VSTF-Based Nonlinear Equalizers Trained on Repeated Random Bit Sequences Open Access

    Kai IKUTA  Jinya NAKAMURA  Moriya NAKAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E107-B No:4
      Page(s):
    349-356

    In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which were designed to compensate for optical nonlinear waveform distortion in optical fiber communication systems. Linear waveform distortion caused by, e.g., chromatic dispersion (CD) is commonly compensated by linear equalizers using digital signal processing (DSP) in digital coherent receivers. However, mitigation of nonlinear waveform distortion is considered to be one of the next important issues. An ANN-based nonlinear equalizer is one possible candidate for solving this problem. However, the risk of overfitting of ANNs is one obstacle in using the technology in practical applications. We evaluated and compared the overfitting of ANN- and conventional VSTF-based nonlinear equalizers used to compensate for optical nonlinear distortion. The equalizers were trained on repeated random bit sequences (RRBSs), while varying the length of the bit sequences. When the number of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting characteristics were comparable to those of the VSTF. However, when the number of hidden-layer units was 10, which is usually enough to compensate for optical nonlinear distortion, the overfitting was weaker than that of the VSTF. Furthermore, we confirmed that even commonly used finite impulse response (FIR) filters showed overfitting to the RRBS when the length of the RRBS was equal to or shorter than the length of the tapped delay line of the filters. Conversely, when the RRBS used for the training was sufficiently longer than the tapped delay line, the overfitting could be suppressed, even when using an ANN-based nonlinear equalizer with 10 hidden-layer units.

  • Efficient Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions and Their Applications

    Daisuke MAEDA  Koki MORIMURA  Shintaro NARISADA  Kazuhide FUKUSHIMA  Takashi NISHIDE  

     
    PAPER

      Pubricized:
    2023/09/14
      Vol:
    E107-A No:3
      Page(s):
    234-247

    We propose how to homomorphically evaluate arbitrary univariate and bivariate integer functions such as division. A prior work proposed by Okada et al. (WISTP'18) uses polynomial evaluations such that the scheme is still compatible with the SIMD operations in BFV and BGV schemes, and is implemented with the input domain ℤ257. However, the scheme of Okada et al. requires the quadratic numbers of plaintext-ciphertext multiplications and ciphertext-ciphertext additions in the input domain size, and although these operations are more lightweight than the ciphertext-ciphertext multiplication, the quadratic complexity makes handling larger inputs quite inefficient. In this work, first we improve the prior work and also propose a new approach that exploits the packing method to handle the larger input domain size instead of enabling the SIMD operation, thus making it possible to work with the larger input domain size, e.g., ℤ215 in a reasonably efficient way. In addition, we show how to slightly extend the input domain size to ℤ216 with a relatively moderate overhead. Further we show another approach to handling the larger input domain size by using two ciphertexts to encrypt one integer plaintext and applying our techniques for uni/bivariate function evaluation. We implement the prior work of Okada et al., our improved version of Okada et al., and our new scheme in PALISADE with the input domain ℤ215, and confirm that the estimated run-times of the prior work and our improved version of the prior work are still about 117 days and 59 days respectively while our new scheme can be computed in 307 seconds.

  • Graph Linear Notations with Regular Expressions

    Ren MIMURA  Kengo MIYAMOTO  Akio FUJIYOSHI  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-D No:3
      Page(s):
    312-319

    This paper proposes graph linear notations and an extension of them with regular expressions. Graph linear notations are a set of strings to represent labeled general graphs. They are extended with regular expressions to represent sets of graphs by specifying chosen parts for selections and repetitions of certain induced subgraphs. Methods for the conversion between graph linear notations and labeled general graphs are shown. The NP-completeness of the membership problem for graph regular expressions is proved.

1-20hit(2699hit)