The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

461-480hit(6809hit)

  • CU-MAC: A MAC Protocol for Centralized UAV Networks with Directional Antennas Open Access

    Aijing LI  Guodong WU  Chao DONG  Lei ZHANG  

     
    PAPER-Network

      Pubricized:
    2019/11/06
      Vol:
    E103-B No:5
      Page(s):
    537-544

    Media Access Control (MAC) is critical to guarantee different Quality of Service (QoS) requirements for Unmanned Aerial Vehicle (UAV) networks, such as high reliability for safety packets and high throughput for service packets. Meanwhile, due to their ability to provide lower delay and higher data rates, more UAVs are using frequently directional antennas. However, it is challenging to support different QoS in UAV networks with directional antennas, because of the high mobility of UAV which causes serious channel resource loss. In this paper, we propose CU-MAC which is a MAC protocol for Centralized UAV networks with directional antennas. First, we design a mobility prediction based time-frame optimization scheme to provide reliable broadcast service for safety packets. Then, a traffic prediction based channel allocation scheme is proposed to guarantee the priority of video packets which are the most common service packets nowadays. Simulation results show that compared with other representative protocols, CU-MAC achieves higher reliability for safety packets and improves the throughput of service packets, especially video packets.

  • On Irreducibility of the Stream Version of Asymmetric Binary Systems

    Hiroshi FUJISAKI  

     
    PAPER-Information Theory

      Vol:
    E103-A No:5
      Page(s):
    757-768

    The interval in ℕ composed of finite states of the stream version of asymmetric binary systems (ABS) is irreducible if it admits an irreducible finite-state Markov chain. We say that the stream version of ABS is irreducible if its interval is irreducible. Duda gave a necessary condition for the interval to be irreducible. For a probability vector (p,1-p), we assume that p is irrational. Then, we give a necessary and sufficient condition for the interval to be irreducible. The obtained conditions imply that, for a sufficiently small ε, if p∈(1/2,1/2+ε), then the stream version of ABS could not be practically irreducible.

  • Universal Testing for Linear Feed-Forward/Feedback Shift Registers

    Hideo FUJIWARA  Katsuya FUJIWARA  Toshinori HOSOKAWA  

     
    PAPER-Dependable Computing

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1023-1030

    Linear feed-forward/feedback shift registers are used as an effective tool of testing circuits in various fields including built-in self-test and secure scan design. In this paper, we consider the issue of testing linear feed-forward/feedback shift registers themselves. To test linear feed-forward/feedback shift registers, it is necessary to generate a test sequence for each register. We first present an experimental result such that a commercial ATPG (automatic test pattern generator) cannot always generate a test sequence with high fault coverage even for 64-stage linear feed-forward/feedback shift registers. We then show that there exists a universal test sequence with 100% of fault coverage for the class of linear feed-forward/feedback shift registers so that no test generation is required, i.e., the cost of test generation is zero. We prove the existence theorem of universal test sequences for the class of linear feed-forward/feedback shift registers.

  • Air Quality Index Forecasting via Deep Dictionary Learning

    Bin CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/02/20
      Vol:
    E103-D No:5
      Page(s):
    1118-1125

    Air quality index (AQI) is a non-dimensional index for the description of air quality, and is widely used in air quality management schemes. A novel method for Air Quality Index Forecasting based on Deep Dictionary Learning (AQIF-DDL) and machine vision is proposed in this paper. A sky image is used as the input of the method, and the output is the forecasted AQI value. The deep dictionary learning is employed to automatically extract the sky image features and achieve the AQI forecasting. The idea of learning deeper dictionary levels stemmed from the deep learning is also included to increase the forecasting accuracy and stability. The proposed AQIF-DDL is compared with other deep learning based methods, such as deep belief network, stacked autoencoder and convolutional neural network. The experimental results indicate that the proposed method leads to good performance on AQI forecasting.

  • Analysis on Hybrid SSD Configuration with Emerging Non-Volatile Memories Including Quadruple-Level Cell (QLC) NAND Flash Memory and Various Types of Storage Class Memories (SCMs)

    Yoshiki TAKAI  Mamoru FUKUCHI  Chihiro MATSUI  Reika KINOSHITA  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E103-C No:4
      Page(s):
    171-180

    This paper analyzes the optimal SSD configuration including emerging non-volatile memories such as quadruple-level cell (QLC) NAND flash memory [1] and storage class memories (SCMs). First, SSD performance and SSD endurance lifetime of hybrid SSD are evaluated in four configurations: 1) single-level cell (SLC)/QLC NAND flash, 2) SCM/QLC NAND flash, 3) SCM/triple-level cell (TLC)/QLC NAND flash and 4) SCM/TLC NAND flash. Furthermore, these four configurations are compared in limited cost. In case of cold workloads or high total SSD cost assumption, SCM/TLC NAND flash hybrid configuration is recommended in both SSD performance and endurance lifetime. For hot workloads with low total SSD cost assumption, however, SLC/QLC NAND flash hybrid configuration is recommended with emphasis on SSD endurance lifetime. Under the same conditions as above, SCM/TLC/QLC NAND flash tri-hybrid is the best configuration in SSD performance considering cost. In particular, for prxy_0 (write-hot workload), SCM/TLC/QLC NAND flash tri-hybrid achieves 67% higher IOPS/cost than SCM/TLC NAND flash hybrid. Moreover, the configurations with the highest IOPS/cost in each workload and cost limit are picked up and analyzed with various types of SCMs. For all cases except for the case of prxy_1 with high total SSD cost assumption, middle-end SCM (write latency: 1us, read latency: 1us) is recommended in performance considering cost. However, for prxy_1 (read-hot workload) with high total SSD cost assumption, high-end SCM (write latency: 100ns, read latency: 100ns) achieves the best performance.

  • A True Random Number Generator Method Embedded in Wireless Communication Systems

    Toshinori SUZUKI  Masahiro KAMINAGA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:4
      Page(s):
    686-694

    To increase the number of wireless devices such as mobile or IoT terminals, cryptosystems are essential for secure communications. In this regard, random number generation is crucial because the appropriate function of cryptosystems relies on it to work properly. This paper proposes a true random number generator (TRNG) method capable of working in wireless communication systems. By embedding a TRNG in such systems, no additional analog circuits are required and working conditions can be limited as long as wireless communication systems are functioning properly, making TRNG method cost-effective. We also present some theoretical background and considerations. We next conduct experimental verification, which strongly supports the viability of the proposed method.

  • Software Development Effort Estimation from Unstructured Software Project Description by Sequence Models

    Tachanun KANGWANTRAKOOL  Kobkrit VIRIYAYUDHAKORN  Thanaruk THEERAMUNKONG  

     
    PAPER

      Pubricized:
    2020/01/14
      Vol:
    E103-D No:4
      Page(s):
    739-747

    Most existing methods of effort estimations in software development are manual, labor-intensive and subjective, resulting in overestimation with bidding fail, and underestimation with money loss. This paper investigates effectiveness of sequence models on estimating development effort, in the form of man-months, from software project data. Four architectures; (1) Average word-vector with Multi-layer Perceptron (MLP), (2) Average word-vector with Support Vector Regression (SVR), (3) Gated Recurrent Unit (GRU) sequence model, and (4) Long short-term memory (LSTM) sequence model are compared in terms of man-months difference. The approach is evaluated using two datasets; ISEM (1,573 English software project descriptions) and ISBSG (9,100 software projects data), where the former is a raw text and the latter is a structured data table explained the characteristic of a software project. The LSTM sequence model achieves the lowest and the second lowest mean absolute errors, which are 0.705 and 14.077 man-months for ISEM and ISBSG datasets respectively. The MLP model achieves the lowest mean absolute errors which is 14.069 for ISBSG datasets.

  • Against Insider Threats with Hybrid Anomaly Detection with Local-Feature Autoencoder and Global Statistics (LAGS)

    Minhae JANG  Yeonseung RYU  Jik-Soo KIM  Minkyoung CHO  

     
    LETTER-Dependable Computing

      Pubricized:
    2020/01/10
      Vol:
    E103-D No:4
      Page(s):
    888-891

    Internal user threats such as information leakage or system destruction can cause significant damage to the organization, however it is very difficult to prevent or detect this attack in advance. In this paper, we propose an anomaly-based insider threat detection method with local features and global statistics over the assumption that a user shows different patterns from regular behaviors during harmful actions. We experimentally show that our detection mechanism can achieve superior performance compared to the state of the art approaches for CMU CERT dataset.

  • Social Behavior Analysis and Thai Mental Health Questionnaire (TMHQ) Optimization for Depression Detection System

    Konlakorn WONGAPTIKASEREE  Panida YOMABOOT  Kantinee KATCHAPAKIRIN  Yongyos KAEWPITAKKUN  

     
    PAPER

      Pubricized:
    2020/01/21
      Vol:
    E103-D No:4
      Page(s):
    771-778

    Depression is a major mental health problem in Thailand. The depression rates have been rapidly increasing. Over 1.17 million Thai people suffer from this mental illness. It is important that a reliable depression screening tool is made available so that depression could be early detected. Given Facebook is the most popular social network platform in Thailand, it could be a large-scale resource to develop a depression detection tool. This research employs techniques to develop a depression detection algorithm for the Thai language on Facebook where people use it as a tool for sharing opinions, feelings, and life events. To establish the reliable result, Thai Mental Health Questionnaire (TMHQ), a standardized psychological inventory that measures major mental health problems including depression. Depression scale of the TMHQ comprises of 20 items, is used as the baseline for concluding the result. Furthermore, this study also aims to do factor analysis and reduce the number of depression items. Data was collected from over 600 Facebook users. Descriptive statistics, Exploratory Factor Analysis, and Internal consistency were conducted. Results provide the optimized version of the TMHQ-depression that contain 9 items. The 9 items are categorized into four factors which are suicidal ideation, sleep problems, anhedonic, and guilty feelings. Internal consistency analysis shows that this short version of the TMHQ-depression has good to excellent reliability (Cronbach's alpha >.80). The findings suggest that this optimized TMHQ-depression questionnaire holds a good psychometric property and can be used for depression detection.

  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • Outage Performance of Multi-Carrier Relay Selections in Multi-Hop OFDM with Index Modulation

    Pengli YANG  Fuqi MU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:3
      Page(s):
    638-642

    In this letter, we adopt two multi-carrier relay selections, i.e., bulk and per-subcarrier (PS), to the multi-hop decode-and-forward relaying orthogonal frequency-division multiplexing with index modulation (OFDM-IM) system. Particularly, in the form of average outage probability (AOP), the influence of joint selection and non-joint selection acting on the last two hops on the system is analyzed. The closed-form expressions of AOPs and the asymptotic AOPs expressions at high signal-to-noise ratio are given and verified by numerical simulations. The results show that both bulk and PS can achieve full diversity order and that PS can provide additional power gain compared to bulk when JS is used. The theoretical analyses in this letter provide an insight into the combination of OFDM-IM and cooperative communication.

  • An Efficient Learning Algorithm for Regular Pattern Languages Using One Positive Example and a Linear Number of Membership Queries

    Satoshi MATSUMOTO  Tomoyuki UCHIDA  Takayoshi SHOUDAI  Yusuke SUZUKI  Tetsuhiro MIYAHARA  

     
    PAPER

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    526-539

    A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language of a regular pattern is the set of all constant strings obtained by replacing all variable symbols in the regular pattern with non-empty strings. The present paper deals with the learning problem of languages of regular patterns within Angluin's query learning model, which is an established mathematical model of learning via queries in computational learning theory. The class of languages of regular patterns was known to be identifiable from one positive example using a polynomial number of membership queries, in the query learning model. In present paper, we show that the class of languages of regular patterns is identifiable from one positive example using a linear number of membership queries, with respect to the length of the positive example.

  • Simultaneous Estimation of Object Region and Depth in Participating Media Using a ToF Camera

    Yuki FUJIMURA  Motoharu SONOGASHIRA  Masaaki IIYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    660-673

    Three-dimensional (3D) reconstruction and scene depth estimation from 2-dimensional (2D) images are major tasks in computer vision. However, using conventional 3D reconstruction techniques gets challenging in participating media such as murky water, fog, or smoke. We have developed a method that uses a continuous-wave time-of-flight (ToF) camera to estimate an object region and depth in participating media simultaneously. The scattered light observed by the camera is saturated, so it does not depend on the scene depth. In addition, received signals bouncing off distant points are negligible due to light attenuation, and thus the observation of such a point contains only a scattering component. These phenomena enable us to estimate the scattering component in an object region from a background that only contains the scattering component. The problem is formulated as robust estimation where the object region is regarded as outliers, and it enables the simultaneous estimation of an object region and depth on the basis of an iteratively reweighted least squares (IRLS) optimization scheme. We demonstrate the effectiveness of the proposed method using captured images from a ToF camera in real foggy scenes and evaluate the applicability with synthesized data.

  • Combining Parallel Adaptive Filtering and Wavelet Threshold Denoising for Photoplethysmography-Based Pulse Rate Monitoring during Intensive Physical Exercise

    Chunting WAN  Dongyi CHEN  Juan YANG  Miao HUANG  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    612-620

    Real-time pulse rate (PR) monitoring based on photoplethysmography (PPG) has been drawn much attention in recent years. However, PPG signal detected under movement is easily affected by random noises, especially motion artifacts (MA), affecting the accuracy of PR estimation. In this paper, a parallel method structure is proposed, which effectively combines wavelet threshold denoising with recursive least squares (RLS) adaptive filtering to remove interference signals, and uses spectral peak tracking algorithm to estimate real-time PR. Furthermore, we propose a parallel structure RLS adaptive filtering to increase the amplitude of spectral peak associated with PR for PR estimation. This method is evaluated by using the PPG datasets of the 2015 IEEE Signal Processing Cup. Experimental results on the 12 training datasets during subjects' walking or running show that the average absolute error (AAE) is 1.08 beats per minute (BPM) and standard deviation (SD) is 1.45 BPM. In addition, the AAE of PR on the 10 testing datasets during subjects' fast running accompanied with wrist movements can reach 2.90 BPM. Furthermore, the results indicate that the proposed approach keeps high estimation accuracy of PPG signal even with strong MA.

  • Joint Angle, Velocity, and Range Estimation Using 2D MUSIC and Successive Interference Cancellation in FMCW MIMO Radar System

    Jonghyeok LEE  Sunghyun HWANG  Sungjin YOU  Woo-Jin BYUN  Jaehyun PARK  

     
    PAPER-Sensing

      Pubricized:
    2019/09/11
      Vol:
    E103-B No:3
      Page(s):
    283-290

    To estimate angle, velocity, and range information of multiple targets jointly in FMCW MIMO radar, two-dimensional (2D) MUSIC with matched filtering and FFT algorithm is proposed. By reformulating the received FMCW signal of the colocated MIMO radar, we exploit 2D MUSIC to estimate the angle and Doppler frequency of multiple targets. Then by using a matched filter together with the estimated angle and Doppler frequency and FFT operation, the range of the target is estimated. To effectively estimate the parameters of multiple targets with large distance differences, we also propose a successive interference cancellation method that uses the orthogonal projection. That is, rather than estimating the multiple target parameters simultaneously using 2D MUSIC, we estimate the target parameters sequentially, in which the parameters of the target having strongest reflected power are estimated first and then, their effect on the received signal is canceled out by using the orthogonal projection. Simulations verify the performance of the proposed algorithm.

  • Software-Based Time-Aware Shaper for Time-Sensitive Networks Open Access

    Yasin OGE  Yuta KOBAYASHI  Takahiro YAMAURA  Tomonori MAEGAWA  

     
    PAPER-Network

      Pubricized:
    2019/09/09
      Vol:
    E103-B No:3
      Page(s):
    167-180

    This paper presents the design, implementation, and evaluation of a time-aware shaper, which is a traffic shaper specifically designed for IEEE 802.1Qbv-compliant time-sensitive networks. The proposed design adopts a software-based approach rather than using a dedicated custom logic chip such as an ASIC or FPGA. In particular, the proposed approach includes a run-time scheduler and a network interface card (NIC) that supports a time-based transmission scheme (i.e., launch-time feature). The run-time scheduler prefetches information (i.e., gate control entry) ahead of time from a given gate control list. With the prefetched information, the scheduler determines a launch time for each frame, and the NIC controls the time at which the transmission of each frame is started in a highly punctual manner. Evaluation results show that the proposed shaper triggers transmission of multiple time-sensitive streams at their intended timings in accordance with a given gate control list, even in the presence of high-bandwidth background traffic. Furthermore, we compare the timing accuracy of frame transmission with and without use of the launch-time feature of the NIC. Results indicate that the proposed shaper significantly reduces jitter of time-sensitive streams (to less than 0.1 µs) unlike a baseline implementation that does not use the launch-time feature.

  • Survey on Challenges and Achievements in Context-Aware Requirement Modeling

    Yuanbang LI  Rong PENG  Bangchao WANG  

     
    SURVEY PAPER-Software Engineering

      Pubricized:
    2019/12/20
      Vol:
    E103-D No:3
      Page(s):
    553-565

    A context-aware system always needs to adapt its behaviors according to context changes; therefore, modeling context-aware requirements is a complex task. With the increasing use of mobile computing, research on methods of modeling context-aware requirements have become increasingly important, and a large number of relevant studies have been conducted. However, no comprehensive analysis of the challenges and achievements has been performed. The methodology of systematic literature review was used in this survey, in which 68 reports were selected as primary studies. The challenges and methods to confront these challenges in context-aware requirement modeling are summarized. The main contributions of this work are: (1) four challenges and nine sub-challenges are identified; (2) eight kinds of methods in three categories are identified to address these challenges; (3) the extent to which these challenges have been solved is evaluated; and (4) directions for future research are elaborated.

  • BER due to Intersymbol Interference in Maximal-Ratio Combining Reception Analyzed Based on Equivalent Transmission-Path Model

    Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/09/06
      Vol:
    E103-B No:3
      Page(s):
    229-239

    The equivalent transmission-path model is a propagation-oriented channel model for predicting the bit error rate due to intersymbol interference in single-input single-output systems. We extend this model to develop a new calculation scheme for maximal-ratio combining diversity reception in single-input multiple-output configurations. A key part of the study is to derive a general formula expressing the joint probability density function of the amplitude ratio and phase difference of the two-path model. In this derivation, we mainly take a theoretical approach with the aid of Monte Carlo simulation. Then, very high-accuracy estimation of the average bit error rate due to intersymbol interference (ISI) for CQPSK calculated based on the model is confirmed by computer simulation. Finally, we propose a very simple calculation formula for the prediction of the BER due to ISI that is commonly applicable to various modulation/demodulation schemes, such as CQPSK, DQPSK, 16QAM, and CBPSK in maximal-ratio combining diversity reception.

  • On Performance of Deep Learning for Harmonic Spur Cancellation in OFDM Systems

    Ziming HE  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:2
      Page(s):
    576-579

    In this letter, the performance of a state-of-the-art deep learning (DL) algorithm in [5] is analyzed and evaluated for orthogonal frequency-division multiplexing (OFDM) receivers, in the presence of harmonic spur interference. Moreover, a novel spur cancellation receiver structure and algorithm are proposed to enhance the traditional OFDM receivers, and serve as a performance benchmark for the DL algorithm. It is found that the DL algorithm outperforms the traditional algorithm and is much more robust to spur carrier frequency offset.

  • Distributed Subgradient Method for Constrained Convex Optimization with Quantized and Event-Triggered Communication

    Naoki HAYASHI  Kazuyuki ISHIKAWA  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    428-434

    In this paper, we propose a distributed subgradient-based method over quantized and event-triggered communication networks for constrained convex optimization. In the proposed method, each agent sends the quantized state to the neighbor agents only at its trigger times through the dynamic encoding and decoding scheme. After the quantized and event-triggered information exchanges, each agent locally updates its state by a consensus-based subgradient algorithm. We show a sufficient condition for convergence under summability conditions of a diminishing step-size.

461-480hit(6809hit)