The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

541-560hit(6809hit)

  • Generalized Shogi, Chess, and Xiangqi are Constant-Time Testable

    Hiro ITO  Atsuki NAGAO  Teagun PARK  

     
    PAPER-Puzzles

      Vol:
    E102-A No:9
      Page(s):
    1126-1133

    We present constant-time testing algorithms for generalized shogi (Japanese chess), chess, and xiangqi (Chinese chess). These problems are known or believed to be EXPTIME-complete. A testing algorithm (or a tester) for a property accepts an input if it has the property, and rejects it with high probability if it is far from having the property (e.g., at least 2/3) by reading only a constant part of the input. A property is said to be testable if a tester exists. Given any position on a ⌊√n⌋×⌊√n⌋ board with O(n) pieces, the generalized shogi, chess, and xiangqi problem are problems determining the property that “the player who moves first has a winning strategy.” We propose that this property is testable for shogi, chess, and xiangqi. The shogi tester and xiangqi tester have a one-sided-error, but surprisingly, the chess tester has no-error. Over the last decade, many problems have been revealed to be testable, but most of such problems belong to NP. This is the first result on the constant-time testability of EXPTIME-complete problems.

  • Calibration of Turntable Based 3D Scanning Systems

    Duhu MAN  Mark W. JONES  Danrong LI  Honglong ZHANG  Zhan SONG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/05/30
      Vol:
    E102-D No:9
      Page(s):
    1833-1841

    The consistent alignment of point clouds obtained from multiple scanning positions is a crucial step for many 3D modeling systems. This is especially true for environment modeling. In order to observe the full scene, a common approach is to rotate the scanning device around a rotation axis using a turntable. The final alignment of each frame data can be computed from the position and orientation of the rotation axis. However, in practice, the precise mounting of scanning devices is impossible. It is hard to locate the vertical support of the turntable and rotation axis on a common line, particularly for lower cost consumer hardware. Therefore the calibration of the rotation axis of the turntable is an important step for the 3D reconstruction. In this paper we propose a novel calibration method for the rotation axis of the turntable. With the proposed rotation axis calibration method, multiple 3D profiles of the target scene can be aligned precisely. In the experiments, three different evaluation approaches are used to evaluate the calibration accuracy of the rotation axis. The experimental results show that the proposed rotation axis calibration method can achieve a high accuracy.

  • Design and Evaluation of Information Bottleneck LDPC Decoders for Digital Signal Processors Open Access

    Jan LEWANDOWSKY  Gerhard BAUCH  Matthias TSCHAUNER  Peter OPPERMANN  

     
    INVITED PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1363-1370

    Receiver implementations with very low quantization resolution will play an important role in 5G, as high precision quantization and signal processing are costly in terms of computational resources and chip area. Therefore, low resolution receivers with quasi optimum performance will be required to meet complexity and latency constraints. The Information Bottleneck method allows for a novel, information centric approach to design such receivers. The method was originally introduced by Naftali Tishby et al. and mostly used in the machine learning field so far. Interestingly, it can also be applied to build surprisingly good digital communication receivers which work fundamentally different than state-of-the-art receivers. Instead of minimizing the quantization error, receiver components with maximum preservation of relevant information for a given bit width can be designed. All signal processing in the resulting receivers is performed using only simple lookup operations. In this paper, we first provide a brief introduction to the design of receiver components with the Information Bottleneck method. We keep referring to decoding of low-density parity-check codes as a practical example. The focus of the paper lies on practical decoder implementations on a digital signal processor which illustrate the potential of the proposed technique. An Information Bottleneck decoder with 4bit message passing decoding is found to outperform 8bit implementations of the well-known min-sum decoder in terms of bit error rate and to perform extremely close to an 8bit belief propagation decoder, while offering considerably higher net decoding throughput than both conventional decoders.

  • From Homogeneous to Heterogeneous: An Analytical Model for IEEE 1901 Power Line Communication Networks in Unsaturated Conditions

    Sheng HAO  Huyin ZHANG  

     
    PAPER-Network

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1636-1648

    Power line communication (PLC) networks play an important role in home networks and in next generation hybrid networks, which provide higher data rates (Gbps) and easier connectivity. The standard medium access control (MAC) protocol of PLC networks, IEEE 1901, uses a special carrier sense multiple access with collision avoidance (CSMA/CA) mechanism, in which the deferral counter technology is introduced to avoid unnecessary collisions. Although PLC networks have achieved great commercial success, MAC layer analysis for IEEE 1901 PLC networks received limited attention. Until now, a few studies used renewal theory and strong law of large number (SLLN) to analyze the MAC performance of IEEE 1901 protocol. These studies focus on saturated conditions and neglect the impacts of buffer size and traffic rate. Additionally, they are valid only for homogeneous traffic. Motivated by these limitations, we develop a unified and scalable analytical model for IEEE 1901 protocol in unsaturated conditions, which comprehensively considers the impacts of traffic rate, buffer size, and traffic types (homogeneous or heterogeneous traffic). In the modeling process, a multi-layer discrete Markov chain model is constructed to depict the basic working principle of IEEE 1901 protocol. The queueing process of the station buffer is captured by using Queueing theory. Furthermore, we present a detailed analysis for IEEE 1901 protocol under heterogeneous traffic conditions. Finally, we conduct extensive simulations to verify the analytical model and evaluate the MAC performance of IEEE 1901 protocol in PLC networks.

  • Recent Activities of 5G Experimental Trials on Massive MIMO Technologies and 5G System Trials Toward New Services Creation Open Access

    Yukihiko OKUMURA  Satoshi SUYAMA  Jun MASHINO  Kazushi MURAOKA  

     
    INVITED PAPER

      Pubricized:
    2019/02/22
      Vol:
    E102-B No:8
      Page(s):
    1352-1362

    In order to cope with recent growth of mobile data traffic and emerging various services, world-wide system trials for the fifth-generation (5G) mobile communication system that dramatically extends capability of the fourth-generation mobile communication system are being performed to launch its commercial service in 2020. In addition, research and development of new radio access technologies for 5G evolution and beyond 5G systems are beginning to be made all over the world. This paper introduces our recent activities on 5G transmission experiments that aim to validate Massive MIMO technologies using higher frequency bands such as SHF/EHF bands, that is, 5G experimental trials. Recent results of 5G system trials to create new services and applications in 5G era in cooperation with partners in vertical industries are also introduced.

  • Performance Comparison of Multi-User Shared Multiple Access Scheme in Uplink Channels Open Access

    Eiji OKAMOTO  Manabu MIKAMI  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1458-1466

    In fifth-generation mobile communications systems (5G), grant-free non-orthogonal multiple access (NOMA) schemes have been considered as a way to accommodate the many wireless connections required for Internet of Things (IoT) devices. In NOMA schemes, both system capacity enhancement and transmission protocol simplification are achieved, and an overload test of more than one hundred percent of the transmission samples over conducted. Multi-user shared multiple access (MUSA) has been proposed as a representative scheme for NOMA. However, the performance of MUSA has not been fully analyzed nor compared to other NOMA or orthogonal multiple access schemes. Therefore, in this study, we theoretically and numerically analyze the performance of MUSA in uplink fading environments and compare it with orthogonal frequency division multiple access (OFDMA), space division multiple access-based OFDMA, low-density signature, and sparse code multiple access. The characteristics and superiority of MUSA are then clarified.

  • Physical Cell ID Detection Probabilities Using Frequency Domain PVS Transmit Diversity for NB-IoT Radio Interface

    Aya SHIMURA  Mamoru SAWAHASHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1477-1489

    This paper proposes frequency domain precoding vector switching (PVS) transmit diversity for synchronization signals to achieve fast physical cell identity (PCID) detection for the narrowband (NB)-Internet-of-Things (IoT) radio interface. More specifically, we propose localized and distributed frequency domain PVS transmit diversity schemes for the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS), and NPSS and NSSS detection methods including a frequency offset estimation method suitable for frequency domain PVS transmit diversity at the receiver in a set of user equipment (UE). We conduct link-level simulations to compare the detection probabilities of NPSS and NSSS, i.e., PCID using the proposed frequency domain PVS transmit diversity schemes, to those using the conventional time domain PVS transmit diversity scheme. The results show that both the distributed and localized frequency domain PVS transmit diversity schemes achieve a PCID detection probability almost identical to that of the time domain PVS transmit diversity scheme when the effect of the frequency offset due to the frequency error of the UE temperature compensated crystal oscillator (TCXO) is not considered. We also show that for a maximum frequency offset of less than approximately 8 kHz, localized PVS transmit diversity achieves almost the same PCID detection probability. It also achieves a higher PCID detection probability than one-antenna transmission although it is degraded compared to the time domain PVS transmit diversity when the maximum frequency offset is greater than approximately 10 kHz.

  • Reduction of Crosstalk Influence in a 7-Core Multicore Fiber by Frequency Interleave

    Shun ORII  Kyo INOUE  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/02/06
      Vol:
    E102-B No:8
      Page(s):
    1590-1594

    Wavelength-division multiplexing multicore fibers can transmit a large amount of information over one fiber, and high-density core allocations enable a large number of fiber lines to be deployed in limited spaces. However, inter-core crosstalk degrades the signal in these systems. This paper describes the design of a frequency interleaving scheme for a 7-core hexagonal multicore fiber. Interleaving schemes shift signal spectra between neighboring cores to reduce the signal degradation caused by inter-core crosstalk. The channel frequency allocation that most efficiently lowers the bit error rate is numerically determined in this study. The results indicate that the optimum frequency interleaving improves the allowable crosstalk ratio by 6.3 dB for QPSK signals, demonstrating its potential for improving wavelength-division multiplexing multicore fiber transmission systems.

  • Indoor and Field Experiments on 5G Radio Access for 28-GHz Band Using Distributed MIMO and Beamforming

    Daisuke KURITA  Kiichi TATEISHI  Daisuke KITAYAMA  Atsushi HARADA  Yoshihisa KISHIYAMA  Hideshi MURAI  Shoji ITOH  Arne SIMONSSON  Peter ÖKVIST  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1427-1436

    This paper evaluates a variety of key 5G technologies such as base station (BS) massive multiple-input multiple-output (MIMO) antennas, beamforming and tracking, intra-baseband unit (BBU) hand over (HO), and coverage. This is done in different interesting 5G areas with a variety of radio conditions such as an indoor office building lobby, an outdoor parking area, and a realistic urban deployment of a 5G radio access system with BSs installed in buildings to deploy a 5G trial area in the Tokyo Odaiba waterfront area. Experimental results show that throughput exceeding 10Gbps is achieved in a 730MHz bandwidth using 8 component carriers, and distributed MIMO throughput gain is achieved in various transmission point deployments in the indoor office building lobby and outdoor parking area using two radio units (RUs). In particular, in the outdoor parking area, a distinct advantage from distributed MIMO is expected and the distributed MIMO gain in throughput of 60% is achieved. The experimental results also clarify the downlink performance in an urban deployment. The experimental results show that throughput exceeding 1.5Gbps is achieved in the area and approximately 200 Mbps is achieved at 500m away from the BS. We also confirm that the beam tracking and intra-BBU HO work well compensating for high path loss at 28-GHz, and achieve coverage 500m from the BS. On the other hand, line of sight (LoS) and non-line-of sight (N-LoS) conditions are critical to 5G performance in the 28-GHz band, and we observe that 5G connections are sometimes dropped behind trees, buildings, and under footbridges.

  • Consistency Checking between Java Equals and hashCode Methods Using Software Analysis Workbench

    Kozo OKANO  Satoshi HARAUCHI  Toshifusa SEKIZAWA  Shinpei OGATA  Shin NAKAJIMA  

     
    PAPER-Software System

      Pubricized:
    2019/05/14
      Vol:
    E102-D No:8
      Page(s):
    1498-1505

    Java is one of important program language today. In Java, in order to build sound software, we have to carefully implement two fundamental methods hashCode and equals. This requirement, however, is not easy to follow in real software development. Some existing studies for ensuring the correctness of these two methods rely on static analysis, which are limited to loop-free programs. This paper proposes a new solution to this important problem, using software analysis workbench (SAW), an open source tool. The efficiency is evaluated through experiments. We also provide a useful situation where cost of regression testing is reduced when program refactoring is conducted.

  • Speech Quality Enhancement for In-Ear Microphone Based on Neural Network

    Hochong PARK  Yong-Shik SHIN  Seong-Hyeon SHIN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2019/05/15
      Vol:
    E102-D No:8
      Page(s):
    1594-1597

    Speech captured by an in-ear microphone placed inside an occluded ear has a high signal-to-noise ratio; however, it has different sound characteristics compared to normal speech captured through air conduction. In this study, a method for blind speech quality enhancement is proposed that can convert speech captured by an in-ear microphone to one that resembles normal speech. The proposed method estimates an input-dependent enhancement function by using a neural network in the feature domain and enhances the captured speech via time-domain filtering. Subjective and objective evaluations confirm that the speech enhanced using our proposed method sounds more similar to normal speech than that enhanced using conventional equalizer-based methods.

  • Experimental Evaluation of Synchronized SS-CDMA Transmission Timing Control Method for QZSS Short Message Communication

    Suguru KAMEDA  Kei OHYA  Hiroshi OGUMA  Noriharu SUEMATSU  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/01/25
      Vol:
    E102-B No:8
      Page(s):
    1781-1790

    We have already proposed synchronized spread spectrum code division multiple access (SS-CDMA) for the Quasi-Zenith Satellite System (QZSS) safety confirmation system to be used in times of great disaster. In this system, the satellite reception timings of all uplink signals are synchronized using a transmission timing control method in order to realize high-density user multiple access. An issue that should be addressed in order for this system to be viable is the error that can occur in the satellite reception timing. This error occurs due to the terminal time deviation and the error in calculating the propagation delay to the satellite. In this paper, we measure the terminal time deviation and the propagation delay calculation error at the same time by using the same receivers and evaluate the satellite reception timing error of the uplink signal. By this measurement, it is shown that satellite reception timing error within 50ns can be realized in 99.98% of mobile terminals. This shows that the synchronized SS-CDMA with the transmission timing control method has a potential to realize the QZSS short message system with high-density user multiple access.

  • High Speed Mobility Experiments on Distributed MIMO Beamforming for 5G Radio Access in 28-GHz Band

    Daisuke KITAYAMA  Kiichi TATEISHI  Daisuke KURITA  Atsushi HARADA  Minoru INOMATA  Tetsuro IMAI  Yoshihisa KISHIYAMA  Hideshi MURAI  Shoji ITOH  Arne SIMONSSON  Peter ÖKVIST  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1418-1426

    This paper describes the results of outdoor mobility measurements and high-speed vehicle tests that clarify the 4-by-8 multiple-input multiple-output (MIMO) throughput performance when applying distributed MIMO with narrow antenna-beam tracking in a 28-GHz frequency band in the downlink of a 5G cellular radio access system. To clarify suitable transmission point (TP) deployment for mobile stations (MS) moving at high speed, we examine two arrangements for 3TPs. The first sets all TPs in a line along the same side of the path traversed by the MS, and the other sets one TP on the other side of the path. The experiments in which the MS is installed on a moving wagon reveal that the latter deployment case enables a high peak data rate and high average throughput performance exhibiting the peak throughput of 15Gbps at the vehicle speed of 3km/h. Setting the MS in a vehicle travelling at 30km/h yielded the peak throughput of 13Gbps. The peak throughput of 11Gbps is achieved at the vehicle speed of 100km/h, and beam tracking and intra-baseband unit hand over operation are successfully demonstrated even at this high vehicle speed.

  • Channel Estimation and Achievable Rate of Massive MU-MIMO Systems with IQ Imbalance Open Access

    Nana ZHANG  Huarui YIN  Weidong WANG  Suhua TANG  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1512-1525

    In-phase and quadrature-phase imbalance (IQI) at transceivers is one of the serious hardware impairments degrading system performance. In this paper, we study the overall performance of massive multi-user multi-input multi-output (MU-MIMO) systems with IQI at both the base station (BS) and user equipments (UEs), including the estimation of channel state information, required at the BS for the precoding design. We also adopt a widely-linear precoding based on the real-valued channel model to make better use of the image components of the received signal created by IQI. Of particular importance, we propose estimators of the real-valued channel and derive the closed-form expression of the achievable downlink rate. Both the analytical and simulation results show that IQI at the UEs limits the dowlink rate to finite ceilings even when an infinite number of BS antennas is available, and the results also prove that the widely-linear precoding based on the proposed channel estimation method can improve the overall performance of massive MU-MIMO systems with IQI.

  • A 0.3-to-5.5 GHz Digital Frequency Discriminator IC with Time to Digital Converter and Edge Counter for Instantaneous Frequency Measurement

    Akihito HIRAI  Koji TSUTSUMI  Hideyuki NAKAMIZO  Eiji TANIGUCHI  Kenichi TAJIMA  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Vol:
    E102-C No:7
      Page(s):
    547-557

    In this paper, a high-frequency resolution Digital Frequency Discriminator (DFD) IC using a Time to Digital Converter (TDC) and an edge counter for Instantaneous Frequency Measurement (IFM) is proposed. In the proposed DFD, the TDC measures the time of the maximum periods of divided RF short pulse signals, and the edge counter counts the maximum number of periods of the signal. By measuring the multiple periods with the TDC and the edge counter, the proposed DFD improves the frequency resolution compared with that of the measuring one period because it is proportional to reciprocal of the measurement time of TDC. The DFD was fabricated using 0.18-um SiGe-BiCMOS. Frequency accuracy below 0.39MHz and frequency precision below 1.58 MHz-RMS were achieved during 50 ns detection time in 0.3 GHz to 5.5 GHz band with the temperature range from -40 to 85 degrees.

  • Rule-Based Automatic Question Generation Using Semantic Role Labeling Open Access

    Onur KEKLIK  Tugkan TUGLULAR  Selma TEKIR  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/04/01
      Vol:
    E102-D No:7
      Page(s):
    1362-1373

    This paper proposes a new rule-based approach to automatic question generation. The proposed approach focuses on analysis of both syntactic and semantic structure of a sentence. Although the primary objective of the designed system is question generation from sentences, automatic evaluation results shows that, it also achieves great performance on reading comprehension datasets, which focus on question generation from paragraphs. Especially, with respect to METEOR metric, the designed system significantly outperforms all other systems in automatic evaluation. As for human evaluation, the designed system exhibits similar performance by generating the most natural (human-like) questions.

  • Several Bits Are Enough: Off-Grid Target Localization in WSNs Using Variational Bayesian EM Algorithm

    Yan GUO  Peng QIAN  Ning LI  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:7
      Page(s):
    926-929

    The compressive sensing has been applied to develop an effective framework for simultaneously localizing multiple targets in wireless sensor networks. Nevertheless, existing methods implicitly use analog measurements, which have infinite bit precision. In this letter, we focus on off-grid target localization using quantized measurements with only several bits. To address this, we propose a novel localization framework for jointly estimating target locations and dealing with quantization errors, based on the novel application of the variational Bayesian Expectation-Maximization methodology. Simulation results highlight its superior performance.

  • Methods for Adaptive Video Streaming and Picture Quality Assessment to Improve QoS/QoE Performances Open Access

    Kenji KANAI  Bo WEI  Zhengxue CHENG  Masaru TAKEUCHI  Jiro KATTO  

     
    INVITED PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1240-1247

    This paper introduces recent trends in video streaming and four methods proposed by the authors for video streaming. Video traffic dominates the Internet as seen in current trends, and new visual contents such as UHD and 360-degree movies are being delivered. MPEG-DASH has become popular for adaptive video streaming, and machine learning techniques are being introduced in several parts of video streaming. Along with these research trends, the authors also tried four methods: route navigation, throughput prediction, image quality assessment, and perceptual video streaming. These methods contribute to improving QoS/QoE performance and reducing power consumption and storage size.

  • EXIT Chart-Aided Design of LDPC Codes for Self-Coherent Detection with Turbo Equalizer for Optical Fiber Short-Reach Transmissions Open Access

    Noboru OSAWA  Shinsuke IBI  Koji IGARASHI  Seiichi SAMPEI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/01/16
      Vol:
    E102-B No:7
      Page(s):
    1301-1312

    This paper proposed an iterative soft interference canceller (IC) referred to as turbo equalizer for the self-coherent detection, and extrinsic information transfer (EXIT) chart based irregular low density parity check (LDPC) code optimization for the turbo equalizer in optical fiber short-reach transmissions. The self-coherent detection system is capable of linear demodulation by a single photodiode receiver. However, the self-coherent detection suffers from the interference induced by signal-signal beat components, and the suppression of the interference is a vital goal of self-coherent detection. For improving the error-free signal detection performance of the self-coherent detection, we proposed an iterative soft IC with the aid of forward error correction (FEC) decoder. Furthermore, typical FEC code is no longer appropriate for the iterative detection of the turbo equalizer. Therefore, we designed an appropriate LDPC code by using EXIT chart aided code design. The validity of the proposed turbo equalizer with the appropriate LDPC is confirmed by computer simulations.

  • Clustering Malicious DNS Queries for Blacklist-Based Detection

    Akihiro SATOH  Yutaka NAKAMURA  Daiki NOBAYASHI  Kazuto SASAI  Gen KITAGATA  Takeshi IKENAGA  

     
    LETTER-Information Network

      Pubricized:
    2019/04/05
      Vol:
    E102-D No:7
      Page(s):
    1404-1407

    Some of the most serious threats to network security involve malware. One common way to detect malware-infected machines in a network is by monitoring communications based on blacklists. However, such detection is problematic because (1) no blacklist is completely reliable, and (2) blacklists do not provide the sufficient evidence to allow administrators to determine the validity and accuracy of the detection results. In this paper, we propose a malicious DNS query clustering approach for blacklist-based detection. Unlike conventional classification, our cause-based classification can efficiently analyze malware communications, allowing infected machines in the network to be addressed swiftly.

541-560hit(6809hit)