The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

7701-7720hit(21534hit)

  • Study on Collective Electron Motion in Si-Nano Dot Floating Gate MOS Capacitor

    Masakazu MURAGUCHI  Yoko SAKURAI  Yukihiro TAKADA  Shintaro NOMURA  Kenji SHIRAISHI  Mitsuhisa IKEDA  Katsunori MAKIHARA  Seiichi MIYAZAKI  Yasuteru SHIGETA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    730-736

    We propose the collective electron tunneling model in the electron injection process between the Nano Dots (NDs) and the two-dimensional electron gas (2DEG). We report the collective motion of electrons between the 2DEG and the NDs based on the measurement of the Si-ND floating gate structure in the previous studies. However, the origin of this collective motion has not been revealed yet. We evaluate the proposed tunneling model by the model calculation. We reveal that our proposed model reproduces the collective motion of electrons. The insight obtained by our model shows new viewpoints for designing future nano-electronic devices.

  • Temperature Dependency of Driving Current in High-k/Metal Gate MOSFET and Its Influence on CMOS Inverter Circuit

    Takeshi SASAKI  Takuya IMAMOTO  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    751-759

    As the integration density and capacitance of semiconductor devices have increased, high-dielectric (High-k) materials have attracted considerable attention. We investigated the dependence of threshold voltage (Vth) characteristics of the High-k/Metal Gate MOSFET fabricated with 65 nm CMOS process on the temperature, in comparison to conventional SiON/Poly-Si Gate MOSFET. Two aspects including the Fermi level and the channel mobility in MOSFET are discussed in details. Furthermore, the influence of threshold voltage characteristics of the High-k/Metal Gate MOSFET on the logic threshold voltage (Vth-inv) of CMOS inverter is reported in this paper.

  • Impact of Annealing Ambience on Resistive Switching in Pt/TiO2/Pt Structure

    Guobin WEI  Yuta GOTO  Akio OHTA  Katsunori MAKIHARA  Hideki MURAKAMI  Seiichiro HIGASHI  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    699-704

    Resistive switching of metal-insulator-metal (MIM), consisting of a metal-organic chemical vapour deposition (MOCVD) TiO2 layer sandwiched between Pt electrodes, has been measured systematically before and after thermal annealing in different ambiences. With H2 annealing at 400, the current level in the high-resistive state (HRS) significantly decreased while little change in the low-resistive state (LRS) was observed. As a result, the switching ratio over 7 orders of magnitude at the current level was obtained. From the analysis of current-voltage (I-V) characteristics in HRS and LRS, we found that the LRS was characterized with an ohmic conduction, while in the HRS after H2 annealing, charge trapping became significant as a result of a significant decrease in the current level. In a separate experiment, a partial reduction in TiO2 was detected using high-resolution X-ray photoelectron spectroscopy (XPS) after resistant-state switching from HRS to LRS by using a Hg probe as a top electrode, which is associated with filament formation.

  • Design of a Microstrip Patch Antenna with Enhanced F/B for WBAN Applications Open Access

    Uisheon KIM  Jaehoon CHOI  

     
    INVITED PAPER

      Vol:
    E94-B No:5
      Page(s):
    1135-1141

    This paper proposes a microstrip patch antenna for 2.45 GHz Industrial Scientific Medical (ISM) band Wireless Body Area Network (WBAN) applications. To enhance the front-to-back ratio (F/B) and specific absorption rate (SAR), an electrically coupled LC resonator is introduced. The overall dimensions of the proposed antenna are 54 mm45 mm2.4 mm and it has a gain of over 1 dBi for the entire 2.45 GHz ISM band. The proposed antenna has an enhanced F/B ratio and specific absorption rate, compared with those of a conventional patch antenna.

  • Power Control for Space-Time Block Coded MIMO System with Beamforming and Imperfect Channel State Information

    Xiang-bin YU  Quan KUANG  Qing-min MENG  Shu-hung LEUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1416-1423

    In this paper, an optimal power control for minimizing bit error rate (BER) subject to a power constraint for space-time block coded MIMO systems with beamforming over Rayleigh fading channels under imperfect channel state information (CSI) is presented. The optimal power control procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization does exist and is unique. To simplify the power control procedure, a closed-form suboptimal power control scheme is drived based on the asymptotic performance analysis of the optimal power control and Taylor's series expansion. The calculation of the suboptimal power control is straightforward with low computational complexity. Moreover, the suboptimal scheme can provide the BER performance close to that of the optimal power control and is lower than that of the existing suboptimal scheme. Simulation results show that the proposed two power control schemes can provide BER lower than that of the equal power allocation and the existing suboptimal scheme under imperfect CSI.

  • Linear Complexity of Quaternary Sequences Generated Using Generalized Cyclotomic Classes Modulo 2p

    Xiaoni DU  Zhixiong CHEN  

     
    LETTER-Information Theory

      Vol:
    E94-A No:5
      Page(s):
    1214-1217

    Let p be an odd prime number. We define a family of quaternary sequences of period 2p using generalized cyclotomic classes over the residue class ring modulo 2p. We compute exact values of the linear complexity, which are larger than half of the period. Such sequences are 'good' enough from the viewpoint of linear complexity.

  • Evaluation of 1/f Noise Characteristics in High-k/Metal Gate and SiON/Poly-Si Gate MOSFET with 65 nm CMOS Process

    Takuya IMAMOTO  Takeshi SASAKI  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    724-729

    In this paper, we compare 1/f noise characteristics of High-k/Metal Gate MOSFET and SiON/Poly-Si Gate MOSFET experimentally, and evaluate the time fluctuation of drive current. These MOSFETs are fabricated with 65 nm CMOS process, and their gate lengths (Lg) are 130 nm. Specifically, we focus on the dependency of the time fluctuation of drive current on channel width (W) and temperature (T). First, we evaluate the dependency on channel width. In the case of SiON/Poly-Si Gate MOSFET, when the channel width is narrow such as W=200 nm and W=250 nm, Power Spectrum Density (PSD) depends on 1/f2 at two frequency regions. Moreover, as the channel width is wide such as W=300 nm, W=500 nm and W=1000 nm, PSD depends on 1/f and the value of PSD shifts lower. This is a new phenomena observed for the first time. On the other hand, in the case of High-k/Metal Gate MOSFET, the value of PSD is about 100 times larger than that of SiON/Poly-Si Gate MOSFET. Moreover, there is no dependency of PSD on channel width ranges from 150 nm to 1000 nm. Second, we evaluate the dependency on temperature. In the case of SiON/Poly-Si Gate MOSFET, when the temperature (T) is lowered from T=27 to T=-35, the dependency changes from the 1/f dependency to the 1/f2 dependency at two different frequency regions. This is also a new phenomena observed for the first time. However, in the case of High-k/Metal Gate MOSFET, there is no dependency of PSD on temperature ranges from 27 to -35. These results are useful knowledge for designing future LSI, because PSD dependency shows different characteristics when both channel width and temperature are changed.

  • A 5th-Order SC Complex BPF Using Series Capacitances for Low-IF Narrowband Wireless Receivers

    Kenji SUZUKI  Mamoru UGAJIN  Mitsuru HARADA  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:5
      Page(s):
    890-895

    A fifth-order switched-capacitor (SC) complex filter was implemented in 0.2-µm CMOS technology. A novel SC integrator was developed to reduce the die size and current consumption of the filter. The filter is centered at 24.730.15 kHz (3δ) and has a bandwidth of 20.260.3 kHz (3δ). The image channel is attenuated by more than 42.6 dB. The in-band third-order harmonic input intercept point (IIP3) is 17.3 dBm, and the input referred RMS noise is 34.3 µVrms. The complex filter consumes 350 µA with a 2.0-V power supply. The die size is 0.578 mm2. Owing to the new SC integrator, the filter achieves a 27% reduction in die size without any degradation in its characteristics, including its noise performance, compared with the conventional equivalent.

  • Effects of Field Plate and Buried Gate Structures on Silicon Carbide Metal-Semiconductor Field-Effect Transistors

    Jae-Gil LEE  Chun-Hyung CHO  Ho-Young CHA  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    842-845

    We investigated the effects of various field plate and buried gate structures on the DC and small signal characteristics of 4H-silicon carbide (SiC) metal-semiconductor field-effect transistors (MESFETs). In comparison with the source-connected field plate, the gate-connected field plate exhibited superior frequency response while having similar DC characteristics. In order to further enhance the output power, dual field plates were employed in conjunction with a buried gate structure.

  • A Multiple Antenna Spectrum Sensing Scheme Based on Space and Time Diversity in Cognitive Radios

    Wenshan YIN  Pinyi REN  Zhou SU  Ruijuan MA  

     
    PAPER-Radio System

      Vol:
    E94-B No:5
      Page(s):
    1254-1264

    Multiple antenna is introduced into spectrum sensing in cognitive radios recently. However, conventional multiple antenna spectrum sensing schemes exploited only space diversity. In this paper, we propose a new multiple antenna sensing scheme based on space and time diversity (MASS-BSTD). First, the primary user signal to be sensed is over-sampled at each antenna, and signal samples collected at the same time instant from different antennas are stacked into a column vector. Second, each column vector is utilized to estimate space correlation matrix that exploits space diversity, and two consecutive column vectors are utilized to estimate time correlation matrix that exploits time diversity. Third, the estimated space correlation matrix and time correlation matrix are combined and analyzed using eigenvalue decomposition to reduce information redundancy of signals from multiple antennas. Lastly, the derived eigenvalues are utilized to construct the test statistic and sense the presence of the primary user signal. Since the proposed MASS-BSTD exploits both space diversity and time diversity, it achieves performance gain over the counterparts that only exploit space diversity. Furthermore, the proposed MASS-BSTD requires no prior information on the primary user, the channel between primary user transmitter and secondary user receiver, and is robust to noise uncertainty. Theoretical analysis and simulation results show that the proposed MASS-BSTD can sense the presence of primary user signal reliably.

  • Cognitive Radio Operation under Directional Primary Interference and Practical Path Loss Models

    Kentaro NISHIMORI  Rocco DI TARANTO  Hiroyuki YOMO  Petar POPOVSKI  

     
    PAPER-Radio System

      Vol:
    E94-B No:5
      Page(s):
    1243-1253

    This paper discusses the possibility of deploying a short-range cognitive radio (secondary communication system) within the service area of a primary system. Although the secondary system interferes with the primary system, there are certain locations in the service area of the primary system where the cognitive radio can reuse the frequency of the primary system without causing harmful interference to it and being disturbed by the primary system. These locations are referred to as having a spatial opportunity for communications in the secondary system, since it can reuse the frequency of the primary system. Simulation results indicate that the antenna gain, beamwidth, and propagation path loss greatly affect the spatial opportunity of frequency reuse for the secondary users. The results show that spatial spectrum reuse can be significantly increased when the primary system users are equipped with directional antennas. An important component in this study is the heterogeneous path loss model, i.e., the path loss model within the primary system is different from the model used to calculate the interference between the primary and the secondary systems. Our results show that the propagation models corresponding to the actual antenna heights in the primary/secondary system can largely impact the possibilities for spectrum reuse by the cognitive radios.

  • High Transport Si/SiGe Heterostructures for CMOS Transistors with Orientation and Strain Enhanced Mobility Open Access

    Jungwoo OH  Jeff HUANG  Injo OK  Se-Hoon LEE  Paul D. KIRSCH  Raj JAMMY  Hi-Deok LEE  

     
    INVITED PAPER

      Vol:
    E94-C No:5
      Page(s):
    712-716

    We have demonstrated high mobility MOS transistors on high quality epitaxial SiGe films selectively grown on Si (100) substrates. The hole mobility enhancement afforded intrinsically by the SiGe channel (60%) is further increased by an optimized Si cap (40%) process, resulting in a combined ∼100% enhancement over Si channels. Surface orientation, channel direction, and uniaxial strain technologies for SiGe channels CMOS further enhance transistor performances. On a (110) surface, the hole mobility of SiGe pMOS is greater on a (110) surface than on a (100) surface. Both electron and hole mobility on SiGe (110) surfaces are further enhanced in a <110> channel direction with appropriate uniaxial channel strain. We finally address low drive current issue of Ge-based nMOSFET. The poor electron transport property is primarily attributed to the intrinsically low density of state and high conductivity effective masses. Results are supported by interface trap density (Dit) and specific contact resistivity (ρc).

  • Joint Iterative Transmit/Receive FDE & FDIC for Single-Carrier Block Transmissions

    Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1396-1404

    In this paper, we propose a novel iterative transmit/receive equalization technique for single-carrier (SC) block transmission in a severe frequency-selective fading channel. Iterative frequency-domain inter-symbol interference (ISI) cancellation (FDIC) is introduced to the previously proposed joint iterative transmit/receive frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion. 1-tap FDE is employed at the transmitter. At the receiver, a 1-tap FDE and FDIC are jointly used and they are updated in an iterative manner. The transmit FDE weight is derived based on the MMSE criterion by taking into account the reduction of residual ISI in the receiver. To derive the weight, the transmitter assumes that the receiver can partially reduce the residual ISI after the FDIC. We conduct a computer simulation to investigate the achievable bit error rate (BER) performance to confirm the effectiveness of our proposed technique.

  • Comparison of Sampling Methods for Total Radiated Power Estimation from Radio Equipment Integrated with Antennas

    Nozomu ISHII  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1174-1183

    EIRP measurement in the direction of maximum radiation has not always been valid to estimate the radiated power from radio equipments integrated with antennas, for example, integrated radiator with antennas shaped like the notebook-sized PC. Therefore, it is recommended that total radiated power (TRP) from equipment under test (EUT) should be estimated by integrating measured EIRPs on the whole surface of the unit sphere. In this paper, a conventional and some novel sampling methods for the TRP estimation, which were proposed to reduce the number of measurement points, are examined by using a measured EIRP data set and compared with each other. For a simulated radio equipment shaped like a notebook-sized PC, it is found that the equi-area and generalized spiral points methods are superior to the equi-angle method in terms of reducing the number of the measurement points and orthogonal three planes method is another candidate in terms of saving measurement time unless the pattern radiated from EUT is not so complicated.

  • A 3.1 to 5 GHz Low-Loss Planar Filter for MB-OFDM UWB Applications

    Young-Pyo HONG  Seong-Sik MYOUNG  Jong-Gwan YOOK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    1098-1101

    A low-loss ultra-wide band (UWB) filter is presented, which uses miniaturized parallel coupled line along with an standard printed circuit board (PCB) technology. By analyzing even- and odd-mode impedances (in comparison with conventional parallel coupled lines) of miniaturized parallel coupled line, this structure provides tight coupling, thus, relaxing the requirements on physical dimensions width and spacing when designing broadband filters. A bandpass filter for Mode 1 (the first 3 sub-bands) in the 3.1-5 GHz band for Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB is realized and compared with a conventional parallel coupled line filter. The experimental results show as much as 0.9 dB insertion loss improvement over the conventional counterpart.

  • Prospective Silicon Applications and Technologies in 2025 Open Access

    Koji KAI  Minoru FUJISHIMA  

     
    INVITED PAPER

      Vol:
    E94-C No:4
      Page(s):
    386-393

    Today, practical semiconductor products are an integral part of our lives and the infrastructure of society, and this trend will continue in the future. New areas of application will expand into medical, environmental, and agriculture (food)-related fields in addition to the conventional information and communication technology (ICT)-related field. Low-cost semiconductor devices with advanced functions have thus far been realized by miniaturization. However, we are now approaching the physical limit of miniaturization, and also, the investment required for new semiconductor manufacturing facilities has become huge. Under such circumstances, we propose an approach based on semiconductor devices called microcube chips and ideas of semiconductor development, i.e., agile integration and "inch-fab." Our approach is expected to contribute to expanding the range of companies that can fabricate semiconductor devices to include small-size companies, exploring new applications of semiconductor devices, and providing a wide variety of semiconductor devices at a low cost from the semiconductor industry.

  • Low Power Platform for Embedded Processor LSIs Open Access

    Toru SHIMIZU  Kazutami ARIMOTO  Osamu NISHII  Sugako OTANI  Hiroyuki KONDO  

     
    INVITED PAPER

      Vol:
    E94-C No:4
      Page(s):
    394-400

    Various low power technologies have been developed and applied to LSIs from the point of device and circuit design. A lot more CPU cores as well as function IPs are integrated on a single chip LSI today. Therefore, not only the device and circuit low power technologies, but software power control technologies are becoming more important to reduce active power of application systems. This paper overviews the low power technologies and defines power management platform as a combination of hardware functions and software programming interface. This paper discusses importance of the power management platform and direction of its development.

  • Extraction of Informative Genes from Multiple Microarray Data Integrated by Rank-Based Approach

    Dongwan HONG  Jeehee YOON  Jongkeun LEE  Sanghyun PARK  Jongil KIM  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:4
      Page(s):
    841-854

    By converting the expression values of each sample into the corresponding rank values, the rank-based approach enables the direct integration of multiple microarray data produced by different laboratories and/or different techniques. In this study, we verify through statistical and experimental methods that informative genes can be extracted from multiple microarray data integrated by the rank-based approach (briefly, integrated rank-based microarray data). First, after showing that a nonparametric technique can be used effectively as a scoring metric for rank-based microarray data, we prove that the scoring results from integrated rank-based microarray data are statistically significant. Next, through experimental comparisons, we show that the informative genes from integrated rank-based microarray data are statistically more significant than those of single-microarray data. In addition, by comparing the lists of informative genes extracted from experimental data, we show that the rank-based data integration method extracts more significant genes than the z-score-based normalization technique or the rank products technique. Public cancer microarray data were used for our experiments and the marker genes list from the CGAP database was used to compare the extracted genes. The GO database and the GSEA method were also used to analyze the functionalities of the extracted genes.

  • Highly Energy Efficient Layer-3 Network Architecture Based on Service Cloud and Optical Aggregation Network

    Hidetoshi TAKESHITA  Daisuke ISHII  Satoru OKAMOTO  Eiji OKI  Naoaki YAMANAKA  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    894-903

    The Internet is an extremely convenient network and has become one of the key infrastructures for daily life. However, it suffers from three serious problems; its structure does not suit traffic centralization, its power consumption is rapidly increasing, and its round-trip time (RTT) and delay jitter are large. This paper proposes an extremely energy efficient layer-3 network architecture for the future Internet. It combines the Service Cloud with the Cloud Router and application servers, with the Optical Aggregation Network realized by optical circuit switches, wavelength-converters, and wavelength-multiplexers/demultiplexers. User IP packets are aggregated and transferred through the Optical Aggregation Network to Cloud transparently. The proposed network scheme realizes a network structure well suited to traffic centralization, reduces the power consumption to 1/20-1/30 compared to the existing Internet, reduces the RTT and delay jitter due to its simplicity, and offers easy migration from the existing Internet.

  • An H.264/AVC Decoder with Reduced External Memory Access for Motion Compensation

    Jaesun KIM  Younghoon KIM  Hyuk-Jae LEE  

     
    PAPER-Computer System

      Vol:
    E94-D No:4
      Page(s):
    798-808

    The excessive memory access required to perform motion compensation when decoding compressed video is one of the main limitations in improving the performance of an H.264/AVC decoder. This paper proposes an H.264/AVC decoder that employs three techniques to reduce external memory access events: efficient distribution of reference frame data, on-chip cache memory, and frame memory recompression. The distribution of reference frame data is optimized to reduce the number of row activations during SDRAM access. The novel cache organization is proposed to simplify tag comparisons and ease the access to consecutive 4×4 blocks. A recompression algorithm is modified to improve compression efficiency by using unused storage space in neighboring blocks as well as the correlation with the neighboring pixels stored in the cache. Experimental results show that the three techniques together reduce external memory access time by an average of 90%, which is 16% better than the improvements achieved by previous work. Efficiency of the frame memory recompression algorithm is improved with a 32×32 cache, resulting in a PSNR improvement of 0.371 dB. The H.264/AVC decoder with the three techniques is fabricated and implemented as an ASIC using 0.18 µm technology.

7701-7720hit(21534hit)