The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

27981-28000hit(30728hit)

  • G/D/1 Queueing Analysis by Discrete Time Modeling

    Kenji NAKAGAWA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E79-A No:3
      Page(s):
    415-417

    G/D/1 is a theoretic model for ATM network queueing based on processing cells. We investigate the G/D/1 system by discrete time modeling. Takacs' combinatorial methods are applied to analyze the system performance. An approximation for the survivor function P[Q > q], which is the probability that the queue length Q in the stationary state exceeds q, is obtained. The obtained formula requires only very small computational complexity and gives good approximation for the true value of P[Q > q].

  • Adaptive Modulation System with Punctured Convolutional Code for High Quality Personal Communication Systems

    Hidehiro MATSUOKA  Seiichi SAMPEI  Norihiko MORINAGA  Yukiyoshi KAMIO  

     
    PAPER-Modulation, Demodulation

      Vol:
    E79-B No:3
      Page(s):
    328-334

    This paper proposes an adaptive modulation system with a punctured convolutional code for land mobile communications to achieve high quality, high bit rate, and high spectral efficient data transmission in multipath fading environments. The proposed system adaptively controls the coding rate of the punctured convolutional code, symbol rate, and modulation level according to the instantaneous fading channel conditions. During good channel conditions, the modulation parameters are selected to increase the transmission rate as much as possible with satisfying a certain transmission quality. As channel conditions become worse, lower rate modulation parameters are applied or transmission is stopped. The performances in fading environments are evaluated theoretically and by computer simulations. The results show that the proposed system can realize higher quality transmission without the degradation in average bit rate compared to conventional adaptive modulation systems.

  • Proposal of the Radio High-Way Networks Using Asynchronous Time Division Multiple Access

    Yozo SHOJI  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER-Access, Network

      Vol:
    E79-B No:3
      Page(s):
    308-315

    Air interfaces of the future mobile communication are widely spreading, because of the multimedia service demands, technology trends and radio propagation conditions. Radio-Highway Networks are expected to realize the universal, seamless and multi-air-interface capability for mobile access networks, and play an important role in the future multimedia radio communications. For the radio-highway networks, this paper newly proposes natural bandpass sampling - asynchronous time division multiple access (NBS-ATDMA) method, where radio signals are natural bandpass sampled at the radio base station and are asynchronously multiplexed on the optic fiber bus link and intelligently transmitted to its desired radio control station. We theoretically analyze the loss probability of the radio signal due to collision in the network and the carrier-to-noise power ratio of received radio signals at the radio control station. Moreover, in order to reduce the loss probability, two access control methods, carrier sense and pulse width control, are proposed, and it is clarified that these improve the number of base station connected to radio highway networks.

  • Fiber-Oriented Wireless Systems for Intelligent Networks

    Kojiro ARAKI  Hiroyuki OHTSUKA  

     
    INVITED PAPER

      Vol:
    E79-B No:3
      Page(s):
    222-229

    This paper overviews fiber-oriented wireless communication systems, particularly in the area of microcell systems. The benefits of fiber-oriented wireless systems are discussed focusing on an application board scheme to facilitate new service deployment in light of intelligent networks. Dynamic range improvement technologies to remove interference are highlighted. Overall system performance is calculated for an economical FP-LD. Furthermore, effective modem use and a potential diversity technique are introduced. This strategy will play a role in realizing flexible fiber-optic subscriber networks.

  • High-Speed Adaptive Noise Canceller with Parallel Block Structure

    Kiyoyasu MARUYAMA  Chawalit BENJANGKAPRASERT  Nobuaki TAKAHASHI  Tsuyoshi TAKEBE  

     
    PAPER

      Vol:
    E79-A No:3
      Page(s):
    275-282

    An adaptive algorithm for a single sinusoid detection using IIR bandpass filter with parallel block structure has been proposed by Nishimura et al. However, the algorithm has three problems: First, it has several input frequencies being impossible to converge. Secondly, the convergence rate can not be higher than that of the scalar structure. Finally, it has a large amount of computation. In this paper, a new algorithm is proposed to solve these problems. In addition, a new structure is proposed to reduce the amount of computation, in which the adaptive control signal generator is realized by the paralel block structure. Simulation results are given to illustrate the performance of the proposed algorithm.

  • 3-D Motion Estimation from Optical Flow with Low Computational Cost and Small Variance

    Norio TAGAWA  Takashi TORIU  Toshio ENDOH  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:3
      Page(s):
    230-241

    In this paper, we study three-dimensional motion estimation using optical flow. We construct a weighted quotient-form objective function that provides an unbiased estimator. Using this objective function with a certain projection operator as a weight drastically reduces the computational cost for estimation compared with using the maximum likelihood estimator. To reduce the variance of the estimator, we examine the weight, and we show by theoretical evaluations and simulations that, with an appropriate projection function, and when the noise variance is not too small, this objective function provides an estimator whose variance is smaller than that of the maximum likelihood estimator. The use of this projection is based on the knowledge that the depth function has a positive value (i. e., the object is in front of the camera) and that it is generally smooth.

  • Observation Techinique for Process-Induced Defects Using Anodic Oxidation

    Morio INOUE  Shinji FUJII  

     
    PAPER-Particle/Defect Control and Analysis

      Vol:
    E79-C No:3
      Page(s):
    324-327

    A new observation technique for process-induced micro-defects in ULSI using a combination of anodic oxidation and chemical removal of the oxide has been developed. Enhanced oxidation has occurred at the defect region due to the stress field and then craterlike delineation has been formed after oxide removal. AFM and SEM observation of the micro-defects induced by ion implantation and applications using this tech-nique to the failure analysis of MOS device fabrication are presented.

  • Advanced Fluorite Regeneration Technology to Recover Spent Fluoride Chemicals Drained from Semi-conductor Manufacturing Process

    Nobuhiro MIKI  Matagoro MAENO  Toshiro FUKUDOME  Tadahiro OHMI  

     
    PAPER-High-Performance Processing

      Vol:
    E79-C No:3
      Page(s):
    363-374

    A regeneration technology of fluorite (CaF2) from spent HF and Buffered HF (BHF) has been investigated. The mechanism of "direct conversion" of granular calcite (CaCO3) into granular fluorite has revealed and several special phenomena are first found to be efficient. An advanced system has been developed. This system regenerates granular fluorite by conversion of granular calcite filled in a column. High purity and low water fluorite is recovered as a substitute for natural fluorspar (CaF2). The fluorine concentration in the processed effluent is minimized to a level of 5 ppm. The separation of the HF processing line and BHF processing line equipped ammonia stripper is an important to system design because ammonia generated from BHF significantly retards the conversion efficiency from CaCO3 to CaF2. The new system reforming the conventional slaked lime processing solves long-pending problem, resulting in a very compact system with a very small amount of product.

  • Optimal Instruction Set Design through Adaptive Detabase Generation

    Nguyen Ngoc BINH  Masaharu IMAI  Akichika SHIOMI  Nobuyuki HIKICHI  

     
    PAPER

      Vol:
    E79-A No:3
      Page(s):
    347-353

    This paper proposes a new method to design an optimal pipelined instructions set processor for ASIP development using a formal HW/SW codesign methodology. First, a HW/SW partioning algorithm for selecting an optimal pipelined architecture is outlined. Then, an adaptive detabase approach is presented that enables to enhance the optimality of the design through very accurate estimation of the performance of a pipelined ASIP in the HW/SW partitioning process. The experimental results show that the proposed method is effective and efficient.

  • An Abstraction of Fixpoint Semantics for Normal Logic Programs

    Susumu YAMASAKI  

     
    PAPER-Software Theory

      Vol:
    E79-D No:3
      Page(s):
    196-208

    We deal with a fixpoint semantics for normal logic programs by means of an algebraic manipulation of idempotent substitution sets. Because of the negation, the function associated with a given normal logic program, which captures the deductions caused by the program, is in general nonmonotonic, as long as we are concerned with 2-valued logic approach. The demerit of the nonmonotonic function is not to guarantee its fixpoint well, although the fixpoint is regarded as representing the whole behaviour. The stable model as in [6] is fixpoint of nonmonotonic functions, but it is referred to on the assumption of its existences. On the other hand, if we take 3-valued logic approach for normal logic programs as in [5], [9], [11], [14] we have the monotonic function to represent resolutions and negation as failure, and define its fixpoint well, if we permit the fixpoint not to be constructive because of discontinuity. Since the substituitions for variables in the program are essentially significant in the deductions for logic programming, we next focus on the representations by means of substitutions for the deductions, without usual expressions based on atomic formulas. We examine the semantics in terms of abstract interpretations among semantics as surveyed in [9], where an abstraction stands for the capability of representing another semantics. In this paper, in 3-valued logic approach and by means of the substitution manipulation, the semantics is defined to be an abstraction of the semantics in [5], [9]. To construct a semantics based on the idempotent substitution set, the algebraic manipulation of substitutions is significant, whereas the treatment in [10] for the case of definite clause sets is not available because of the restriction of substitutions to some variable domain as most general unifications.

  • Modulo 2p-1 Arithmetic Hardware Algorithm Using Signed-Digit Number Representation

    Shugang WEI  Kensuke SHIMIZU  

     
    LETTER-Computer Hardware and Design

      Vol:
    E79-D No:3
      Page(s):
    242-246

    To realize high-speed computations in a residue number system (RNS), an implementation method for residue arithmetic circuits using signed-digit (SD) number representation is proposed. Integers mp = (2p-1) known as Mersenne numbers are used as moduli, so that modulo mp addition can be performed by an end-around-carry SD adder and the addition time is independent of the word length of operands. Using a binary modulo mp SD adder tree, the modulo mp multiplication can be performed in a time proportional to log2p.

  • Object Recognition Using Model Relation Based on Fuzzy Logic

    Masanobu IKEDA  Masao IZUMI  Kunio FUKUNAGA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:3
      Page(s):
    222-229

    Understanding unknown objects in images is one of the most important fields of the computer vision. We are confronted with the problem of dealing with the ambiguity of the image information about unknown objects in the scene. The purpose of this paper is to propose a new object recognition method based on the fuzzy relation system and the fuzzy integral. In order to deal with the ambiguity of the image information, we apply the fuzzy theory to object recognition subjects. Firstly, we define the degree of similarity based on the fuzzy relation system among input images and object models. In the next, to avoid the uncertainty of relations between the input image and the 2-D aspects of models, we integrate the degree of similarity obtained from several input images by the fuzzy integral. This proposing method makes it possible to recognize the unknown objects correctly under the ambiguity of the image information. And the validity of our method is confirmed by the experiments with six kinds of chairs.

  • A Sender-Initiated Adaptive Load Balancing Scheme Based on Predictable State Knowledge*

    Gil-Haeng LEE  Heung-Kyu LEE  Jung-Wan CHO  

     
    PAPER-Sofware System

      Vol:
    E79-D No:3
      Page(s):
    209-221

    In an adaptive load balancing, the location policy to determine a destination node for transferring tasks can be classified into three categories: dynamic selection, random selection, and state polling. The dynamic selection immediately determines a destination node by exploiting the state information broadcasted from other nodes. It not only requires the overheads of collecting the state information, but may cause an unpredictable behavior unless the state information is accurate. Also, it may not guarantee even load distribution. The random selection determines a destination node at random. The state polling determines a destination node by polling other nodes. It may cause some problems such as useless polling, unachievable load balancing, and system instability. A new Sender-initiated Adaptive LOad balancing scheme (SALO) is presented to remedy the above problems. It determines a destination node by exploiting the predictable state knowledge and by polling the destination node. It can determine a good destination with minimal useless polling and guarantee even load distribution. Also, it has an efficient mechanism and good data structure to collect the state information simply. An analytic model is developed to compare with other well known schemes. The validity of the model is checked with an event-driven simulation. With the model and the simulation result, it is shown that SALO yields a significant improvement over other schemes, especially at high system loads.

  • A Reliable Packet Transmission Method for TDMA Based Wireless Multimedia Communications

    Katsuhiko KAWAZOE  Yoshihisa SUGIMURA  Shuji KUBOTA  

     
    PAPER-Access, Network

      Vol:
    E79-B No:3
      Page(s):
    251-256

    Multiple TDMA bursts assignment between a base station and a personal terminal will be required for multimedia communications that offers high speed signal transmission such as voice and data simultaneous transmission. This paper proposes a reliable packet transmission method for TDMA based wireless multimedia communications. The proposed method employs an adaptive transmission rate control according to the packet length and a burst diversity technique is applied to improve the frame error rate of a packet. The frame error rate performance has been approximated theoretically by using fade- and infade-duration statistics of a Rayleigh fading channel and a computer simulation has been carried out for two control channels, FACCH/SACCH (Fast/Slow Associated Control CHannel) in the PHS as well as GSM. Both results indicate that the frame error rate is dramatically improved, about one order, when two bursts have different frequency and improved by about 25% when the two bursts have the same frequency.

  • Sequential Dry Cleaning System for Highly-Controlled Silicon Surfaces

    Takashi ITO  

     
    PAPER-High-Performance Processing

      Vol:
    E79-C No:3
      Page(s):
    375-381

    High-performance ULSI devices require ultraclean silicon surfaces, the complete removal of native oxides, and atomic level flatness and stabilization of the cleaned surfaces against molecular contaminants. Dry cleaning techniques are an attractive alternative to conventional wet processing for future ULSI production using cluster chambers or multi-process cham-bers. Organic contaminants, including photoresist polymers, are effectively removed by photo-excited ozone cleaning. We have found photo-excited halogen radicals to be useful for removing trace metals and native oxides from silicon surfaces without damaging on silicon and silicon-dioxide surfaces. We success-fully terminated hydrogen on (100) silicon surfaces by annealing in pure hydrogen ambient. A dry cleaning system with these sequential processes will be useful in constructing fully-integrated mass-production lines of high-performance ULSI devices.

  • Minimization of Multiple-Valued Logic Expressions with Kleenean Coefficients

    Yutaka HATA  Takahiro HOZUMI  Kazuharu YAMATO  

     
    PAPER-Computer Hardware and Design

      Vol:
    E79-D No:3
      Page(s):
    189-195

    This paper describes Kleenean coefficients that are a subset of Kleenean functions for use in representing multiple-valued logic functions. A conventional multiple-valued sum-of-products expression uses product terms that are the MIN of literals and constants. In this paper, a new sum-of-products expression is allowed to sum product terms that also include variables and complements of variables. Since the conventional sum-of-products expression is complete, so also is the augmented one. A minimization method of the new expression is described besed on the binary Quine-McCluskey algorithm. The result of computer simulation shows that a saving of the number of implicants used in minimal expressions by approximately 9% on the average can be obtained for some random functions. A result for some arithmetic functions shows that the minimal solutions of MOD radix SUM, MAX and MIN functions require much fewer implicants than those of the standard sum-of-products expressions. Thus, this paper clarifies that the new expression has an advantage to reduce the number of implicants in minimal sum-of-products expressions.

  • Proposal of Multi Layered Microcell System with No Handover Areas

    Akira YAMAGUCHI  Hideo KOBAYASHI  Toshio MIZUNO  

     
    PAPER-Access, Network

      Vol:
    E79-B No:3
      Page(s):
    266-271

    This paper proposes a novel mobile communications system of integrating microcell and macrocell for future land mobile communications which allows the user to enjoy mobile communications services by using one terminal regardless of his terminal speed. Current and developing digital land mobile communications systems are classified into two categories according to their differences in cell size, operating environments, service requirements and terminal speeds. One is a microcell system offering cordless telephone services for the user moving at low speeds and the other is a macrocell system offering vehicle telephone services for the user moving at high speeds. In order to access these two systems, the user needs to have two different terminals and to use an appropriate one according to the operating environments, service requirements and terminal speeds. In this paper, we propose a land mobile communications system in which the user can place a call without any of the inconvenienced described above. The proposed system consists of multi layered composite microcell system with no handover areas, each layer being composed of a number of microcells. This paper presents the detailed structure of this system and evaluates the performances of the channel capacity and the frequency of handovers during a call based on computer simulation results.

  • Cumulant-Based Adaptive Deconvolution for Multichannel Tracking

    Mingyong ZHOU  Zhongkan LIU  Hiromitsu HAMA  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E79-D No:3
      Page(s):
    177-181

    A cumulant-based lattice algorithm for multichannel adaptive filtering is proposed in this paper. Proposed algorithm takes into account the advantages of higer-order statistics, that is, improvement of estimation accuracy, blindness to colored Gaussian noise and the possibility to estimate the nonminimum-phase system etc. Without invoking the Instrumental Variable () method as used in other papers [1], [2], the algorithm is derived directly from the recursive pseudo-inverse matrix. The behavior of the algorithm is illustrated by numerical examples.

  • Effects of 50 to 200-keV Electrons by BEASTLI Method on Semiconductor Devices

    Fumio MIZUNO  Satoru YAMADA  Tsunao ONO  

     
    PAPER-Device Issues

      Vol:
    E79-C No:3
      Page(s):
    392-397

    We studied effects of 50-200-keV electrons on semiconductor devices using BEASTLI (backscattered electron assisting LSI inspection) method. When irradiating semiconduc-tor devices with such high-energy electrons, we have to note two phenomena. The first is surface charging and the second is device damage. In our study of surface charging, we found that a net positive charge was formed on the device surface. The positive surface charges do not cause serious influence for observation so that we can inspect wafers without problems. The positive surface charging may be brought about because most incident electrons penetrate the device layer and reach the conducting substrate of the semiconductor device. For the device damage, we studied MOS devices which were sensitive to electron-beam irradiation. By applying a 400- annealing to electron-beam irradiated MOS devices, we could restore the initial characteris-tics of MOS devices. However, in order to recover hot-carrier degradation due to neutral traps, we had to apply a 900- annealing to the electron-beam irradiated MOS devices. Thus, BEASTLI could be successfully used by providing an apporopri-ate annealing to the electron-beam irradiated MOS devices.

  • A Precise Event-Driven MOS Circhit Simulator

    Tetsuro KAGE  Hisanori FUJISAWA  Fumiyo KAWAFUJI  Tomoyasu KITAURA  

     
    PAPER

      Vol:
    E79-A No:3
      Page(s):
    339-346

    Circuit simulators are used to verify circuit functionality and to obtain detailed timing information before the expensive fabrication process takes place. They have become an essential CAD tool in an era of sub-micron technology. We have developed a new event-driven MOS circuit simulator to replace a direct method circuit simulator. In our simulator, partitioned subcircuits are analyzed by a direct method matrix solver, and these are controlled by an event-driven scheme to maintain accuracy. The key of this approach is how to manage events for circuit simulation. We introduced two types of events: self-control events for a subcircuit and prediction correcting events between subcircuits. They control simulation accuracy, and bring simulation efficiency through multi-rate behavior of a large scale circuit. The event-driven scheme also brings some useful functions which are not available from a direct method circuit simulator, such as a selected block simulation function and a batch simulation function for load variation. We simulated logic modules (buffer, adder, and counter) with about 1000 MOSFETs with our event-driven MOS circuit simulator. Our simulator was 5-7 times faster than a SPICE-like circuit simulator, while maintaining the less than 1% error accuracy. The selected block simulation function enables to shorten simulation time without losing any accuracy by selecting valid blocks in a circuit to simulate specified node waveforms. Using this function, the logic modules were simulated 13-28 times faster than the SPICE-like circuit simulator while maintaining the same accuracy.

27981-28000hit(30728hit)