Shuoyan LIU Chao LI Yuxin LIU Yanqiu WANG
Escalators are an indispensable facility in public places. While they can provide convenience to people, abnormal accidents can lead to serious consequences. Yolo is a function that detects human behavior in real time. However, the model exhibits low accuracy and a high miss rate for small targets. To this end, this paper proposes the Small Target High Performance YOLO (SH-YOLO) model to detect abnormal behavior in escalators. The SH-YOLO model first enhances the backbone network through attention mechanisms. Subsequently, a small target detection layer is incorporated in order to enhance detection of key points for small objects. Finally, the conv and the SPPF are replaced with a Region Dynamic Perception Depth Separable Conv (DR-DP-Conv) and Atrous Spatial Pyramid Pooling (ASPP), respectively. The experimental results demonstrate that the proposed model is capable of accurately and robustly detecting anomalies in the real-world escalator scene.
Nat PAVASANT Takashi MORITA Masayuki NUMAO Ken-ichi FUKUI
We proposed a procedure to pre-process data used in a vector autoregressive (VAR) modeling of a temporal point process by using kernel density estimation. Vector autoregressive modeling of point-process data, for example, is being used for causality inference. The VAR model discretizes the timeline into small windows, and creates a time series by the presence of events in each window, and then models the presence of an event at the next time step by its history. The problem is that to get a longer history with high temporal resolution required a large number of windows, and thus, model parameters. We proposed the local density estimation procedure, which, instead of using the binary presence as the input to the model, performed kernel density estimation of the event history, and discretized the estimation to be used as the input. This allowed us to reduce the number of model parameters, especially in sparse data. Our experiment on a sparse Poisson process showed that this procedure vastly increases model prediction performance.
Fan LIU Zhewang MA Masataka OHIRA Dongchun QIAO Guosheng PU Masaru ICHIKAWA
In this paper, a precise design method of high-order bandpass filters (BPFs) with complicated coupling topologies is proposed, and is demonstrated through the design of an 11-pole BPF using TM010 mode dielectric resonators (DRs). A novel Z-shaped coupling structure is proposed which avoids the mixed use of TM010 and TM01δ modes and enables the tuning and assembling of the filter much easier. The coupling topology of the BPF includes three cascade triplets (CTs) of DRs, and both the capacitive and inductive couplings in the CTs are designed independently tunable, which produce consequently three controllable transmission zeros on both sides of the passband of filter. A procedure of mapping the coupling matrix of BPF to its physical dimensions is developed, and an iterative optimization of these physical dimensions is implemented to achieve best performance. The design of the 11-pole BPF is shown highly precise by the excellent agreement between the electromagnetic simulated response of the filter and the desired target specifications.
Akihiko ISHIWATA Yasumasa NAKA Masaya TAMURA
The load-independent zero-voltage switching class-E inverter has garnered considerable interest as an essential component in wireless power transfer systems. This inverter achieves high efficiency across a broad spectrum of load conditions by incorporating a load adjustment circuit (LAC) subsequent to the resonant filter. Nevertheless, the presence of the LAC influences the output impedance of the inverter, thereby inducing a divergence between the targeted and observed output power, even in ideal lossless simulations. Consequently, iterative adjustments to component values are required via an LC element implementation. We introduce a novel design methodology that incorporates an external quality factor on the side of the resonant filter, inclusive of the LAC. Thus, the optimized circuit achieves the intended output power without necessitating alterations in component values.
A double step attenuation measurement technique using a non-isolating gauge block attenuator (GBA) has been proposed for accurate measurements of radio frequency and microwave high attenuation. For fixed attenuator as a device under test (DUT), a medium value (≤ 60 dB) attenuator is used as the GBA which connected directly between the test ports, then high attenuation of the DUT is measured in two setups as follows. 1) Thru and GBA with normal power level and 2) GBA and DUT with higher power level. This approach removes the need to isolate the GBA, therefore, accurate measurements of high attenuation can be obtained simply over a broad frequency range. For variable or step attenuator as a DUT, one of the attenuation sections of the DUT is applied as the GBA. Detailed analyses and those verification measurements are carried out both for fixed attenuator, as well as for variable attenuator and show good agreement.
Recent years have seen a general resurgence of interest in analog signal processing and computing architectures. In addition, extensive theoretical and experimental literature on chaos and analog chaotic oscillators exists. One peculiarity of these circuits is the ability to generate, despite their structural simplicity, complex spatiotemporal patterns when several of them are brought towards synchronization via coupling mechanisms. While by no means a systematic survey, this paper provides a personal perspective on this area. After briefly covering design aspects and the synchronization phenomena that can arise, a selection of results exemplifying potential applications is presented, including in robot control, distributed sensing, reservoir computing, and data augmentation. Despite their interesting properties, the industrial applications of these circuits remain largely to be realized, seemingly due to a variety of technical and organizational factors including a paucity of design and optimization techniques. Some reflections are given regarding this situation, the potential relevance to discontinuous innovation in analog circuit design of chaotic oscillators taken both individually and as synchronized networks, and the factors holding back the transition to higher levels of technology readiness.
Jiakai LI Jianyong DUAN Hao WANG Li HE Qing ZHANG
Chinese spelling correction is a foundational task in natural language processing that aims to detect and correct spelling errors in text. Most spelling corrections in Chinese used multimodal information to model the relationship between incorrect and correct characters. However, feature information mismatch occured during fusion result from the different sources of features, causing the importance relationships between different modalities to be ignored, which in turn restricted the model from learning in an efficient manner. To this end, this paper proposes a multimodal language model-based Chinese spelling corrector, named as MISpeller. The method, based on ChineseBERT as the basic model, allows the comprehensive capture and fusion of character semantic information, phonetic information and graphic information in a single model without the need to construct additional neural networks, and realises the phenomenon of unequal fusion of multi-feature information. In addition, in order to solve the overcorrection issues, the replication mechanism is further introduced, and the replication factor is used as the dynamic weight to efficiently fuse the multimodal information. The model is able to control the proportion of original characters and predicted characters according to different input texts, and it can learn more specifically where errors occur. Experiments conducted on the SIGHAN benchmark show that the proposed model achieves the state-of-the-art performance of the F1 score at the correction level by an average of 4.36%, which validates the effectiveness of the model.
We propose a pre-T event-triggered controller (ETC) for the stabilization of a chain of integrators. Our per-T event-triggered controller is a modified event-triggered controller by adding a pre-defined positive constant T to the event-triggering condition. With this pre-T, the immediate advantages are (i) the often complicated additional analysis regarding the Zeno behavior is no longer needed, (ii) the positive lower bound of interexecution times can be specified, (iii) the number of control input updates can be further reduced. We carry out the rigorous system analysis and simulations to illustrate the advantages of our proposed method over the traditional event-triggered control method.
Smart cities aim to improve the quality of life of citizens and efficiency of city operations through utilization of 5G communication technology. Based on various technologies such as IoT, cloud computing, artificial intelligence, and big data, they provide smart services in terms of urban planning, development, and management for solving problems such as fine dust, traffic congestion and safety, energy efficiency, water shortage, and an aging population. However, as smart city has an open network structure, an adversary can easily try to gain illegal access and perform denial of service and sniffing attacks that can threaten the safety and privacy of citizens. In smart cities, the global mobility network (GLOMONET) supports mobile services between heterogeneous networks of mobile devices such as autonomous vehicles and drones. Recently, Chen et al. proposed a user authentication scheme for GLOMONET in smart cities. Nevertheless, we found some weaknesses in the scheme proposed by them. In this study, we propose a secure lightweight authentication for roaming services in a smart city, called SLARS, to enhance security. We proved that SLARS is more secure and efficient than the related authentication scheme for GLOMONET through security and performance analysis. Our analysis results show that SLARS satisfies all security requirements in GLOMONET and saves 72.7% of computation time compared to that of Chen et al.’s scheme.
Koji ABE Mikiya KUZUTANI Satoki FURUYA Jose A. PIEDRA-LORENZANA Takeshi HIZAWA Yasuhiko ISHIKAWA
A reduced dark leakage current, without degrading the near-infrared responsivity, is reported for a vertical pin structure of Ge photodiodes (PDs) on n+-Si substrate, which usually shows a leakage current higher than PDs on p+-Si. The peripheral/surface leakage, the dominant leakage in PDs on n+-Si, is significantly suppressed by globally implanting P+ in the i-Si cap layer protecting the fragile surface of i-Ge epitaxial layer before locally implanting B+/BF2+ for the top p+ region of the pin junction. The P+ implantation compensates free holes unintentionally induced due to the Fermi level pinning at the surface/interface of Ge. By preventing the hole conduction from the periphery to the top p+ region under a negative/reverse bias, a reduction in the leakage current of PDs on n+-Si is realized.
Software refactoring is an important process in software development. During software refactoring, code smell is a popular research topic that refers to design or implementation flaws in the software. Large class is one of the most concerning code smells in software refactoring. Detecting and refactoring such problem has a profound impact on software quality. In past years, software metrics and clustering techniques have commonly been used for the large class detection. However, deep-learning-based approaches have also received considerable attention in recent studies. In this study, we apply graph neural networks (GNNs), an important division of deep learning, to address the problem of large class detection. First, to support the extensive data requirements of the deep learning task, we apply a semiautomatic approach to generate a substantial number of data samples. Next, we design a new type of directed heterogeneous graph (DHG) as an input graph using the methods similarity matrix and software metrics. We construct an input graph for each class sample and make the graph classification with GNNs to identify the smelly classes. In our experiments, we apply three typical GNN model architectures for large class detection and compare the results with those of previous studies. The results show that the proposed approach can achieve more accurate and stable detection performance.
Qi LIU Bo WANG Shihan TAN Shurong ZOU Wenyi GE
For flight simulators, it is crucial to create three-dimensional terrain using clear remote sensing images. However, due to haze and other contributing variables, the obtained remote sensing images typically have low contrast and blurry features. In order to build a flight simulator visual system, we propose a deep learning-based dehaze model for remote sensing images dehazing. An encoder-decoder architecture is proposed that consists of a multiscale fusion module and a gated large kernel convolutional attention module. This architecture can fuse multi-resolution global and local semantic features and can adaptively extract image features under complex terrain. The experimental results demonstrate that, with good generality and application, the model outperforms existing comparison techniques and achieves high-confidence dehazing in remote sensing images with a variety of haze concentrations, multi-complex terrains, and multi-spatial resolutions.
We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.
Kundan Lal DAS Munehisa SEKIKAWA Tadashi TSUBONE Naohiko INABA Hideaki OKAZAKI
This paper discusses the synchronization of two identical canard-generating oscillators. First, we investigate a canard explosion generated in a system containing a Bonhoeffer-van der Pol (BVP) oscillator using the actual parameter values obtained experimentally. We find that it is possible to numerically observe a canard explosion using this dynamic oscillator. Second, we analyze the complete and in-phase synchronizations of identical canard-generating coupled oscillators via experimental and numerical methods. However, we experimentally determine that a small decrease in the coupling strength of the system induces the collapse of the complete synchronization and the occurrence of a complex synchronization; this finding could not be explained considering four-dimensional autonomous coupled BVP oscillators in our numerical work. To numerically investigate the experimental results, we construct a model containing coupled BVP oscillators that are subjected to two weak periodic perturbations having the same frequency. Further, we find that this model can efficiently numerically reproduce experimentally observed synchronization.
Ryuta TAMURA Yuichi TAKANO Ryuhei MIYASHIRO
We study the mixed-integer optimization (MIO) approach to feature subset selection in nonlinear kernel support vector machines (SVMs) for binary classification. To measure the performance of subset selection, we use the distance between two classes (DBTC) in a high-dimensional feature space based on the Gaussian kernel function. However, DBTC to be maximized as an objective function is nonlinear, nonconvex and nonconcave. Despite the difficulty of linearizing such a nonlinear function in general, our major contribution is to propose a mixed-integer linear optimization (MILO) formulation to maximize DBTC for feature subset selection, and this MILO problem can be solved to optimality using optimization software. We also derive a reduced version of the MILO problem to accelerate our MILO computations. Experimental results show good computational efficiency for our MILO formulation with the reduced problem. Moreover, our method can often outperform the linear-SVM-based MILO formulation and recursive feature elimination in prediction performance, especially when there are relatively few data instances.
Hiroya HACHIYAMA Takamichi NAKAMOTO
Devices presenting audiovisual information are widespread, but few ones presenting olfactory information. We have developed a device called an olfactory display that presents odors to users by mixing multiple fragrances. Previously developed olfactory displays had the problem that the ejection volume of liquid perfume droplets was large and the dynamic range of the blending ratio was small. In this study, we used an inkjet device that ejects small droplets in order to expand the dynamic range of blending ratios to present a variety of scents. By finely controlling the back pressure using an electro-osmotic pump (EO pump) and adjusting the timing of EO pump and inkjet device, we succeeded in stabilizing the ejection of the inkjet device and we can have large dynamic range.
We propose a zero-order-hold triggered control for a chain of integrators with an arbitrary sampling period. We analytically show that our control scheme globally asymptotically stabilizes the considered system. The key feature is that the pre-specified sampling period can be enlarged as desired by adjusting a gain-scaling factor. An example with various simulation results is given for clear illustration.
Jun-Feng LIU Yuan FENG Zeng-Hui LI Jing-Wei TANG
To improve the control performance of the permanent magnet synchronous motor speed control system, the fractional order calculus theory is combined with the sliding mode control to design the fractional order integral sliding mode sliding mode surface (FOISM) to improve the robustness of the system. Secondly, considering the existence of chattering phenomenon in sliding mode control, a new second-order sliding mode reaching law (NSOSMRL) is designed to improve the control accuracy of the system. Finally, the effectiveness of the proposed strategy is demonstrated by simulation.
Sota MORIYAMA Koichi ICHIGE Yuichi HORI Masayuki TACHI
In this paper, we propose a method for video reflection removal using a video restoration framework with enhanced deformable networks (EDVR). We examine the effect of each module in EDVR on video reflection removal and modify the models using 3D convolutions. The performance of each modified model is evaluated in terms of the RMSE between the structural similarity (SSIM) and the smoothed SSIM representing temporal consistency.
Takao WAHO Akihisa KOYAMA Hitoshi HAYASHI
Signal processing using delta-sigma modulated bit streams is reviewed, along with related topics in stochastic computing (SC). The basic signal processing circuits, adders and multipliers, are covered. In particular, the possibility of preserving the noise-shaping properties inherent in delta-sigma modulation during these operations is discussed. Finally, the root mean square error for addition and multiplication is evaluated, and the performance improvement of signal processing in the delta-sigma domain compared with SC is verified.