Tu NGUYEN VAN Satoshi YAGITANI Kensuke SHIMIZU Shinjiro NISHI Mitsunori OZAKI Tomohiko IMACHI
A metasurface absorber capable of monitoring two-dimensional (2-d) electric field distributions has been developed, where a matrix of lumped resistors between surface patches formed on a mushroom-type structure works as a 2-d array of short dipole sensors. In this paper absorption and reflection of a spherical wave incident on the metasurface absorber are analyzed by numerical computation by the plane-wave spectrum (PWS) technique using 2-d Fourier analysis. The electromagnetic field of the spherical wave incident on the absorber surface is expanded into a large number of plane waves, for each of which the TE and TM reflection and absorption coefficients are applied. Then by synthesizing all the plane wave fields we obtain the spatial distributions of reflected and absorbed fields. The detailed formulation of the computation is described, and the computed field distributions are compared with those obtained by simulation and actual measurement when the spherical wave from a dipole is illuminated onto a metasurface absorber. It is demonstrated that the PWS technique is effective and efficient in obtaining the accurate field distributions of the spherical wave on and around the absorber. This is useful for evaluating the performance of the metasurface absorber to absorb and measure the spherical wave field distributions around an EM source.
Wataru KOBAYASHI Shigeru KANAZAWA Takahiko SHINDO Manabu MITSUHARA Fumito NAKAJIMA
We evaluated the energy efficiency per 1-bit transmission of an optical light source on InP substrate to achieve optical interconnection. A semiconductor optical amplifier (SOA) assisted extended reach EADFB laser (AXEL) was utilized as the optical light source to enhance the energy efficiency compared to the conventional electro-absorption modulator integrated with a DFB laser (EML). The AXEL has frequency bandwidth extendibility for operation of over 100Gbit/s, which is difficult when using a vertical cavity surface emitting laser (VCSEL) without an equalizer. By designing the AXEL for low power consumption, we were able to achieve 64-Gbit/s, 1.0pJ/bit and 128-Gbit/s, 1.5pJ/bit operation at 50°C with the transmitter dispersion and eye closure quaternary of 1.1dB.
Yukihiro TOMINARI Toshiki YAMADA Takahiro KAJI Akira OTOMO
We investigated the photochemical stability of an electro-optic (EO) polymer under laser irradiation at 1310nm to reveal photodegradation mechanisms. It was found that one-photon absorption excitation assisted with the thermal energy at the temperature is involved in the photodegradation process, in contrast to our previous studies at a wavelength of 1550nm where two-photon absorption excitation is involved in the photodegradation process. Thus, both the excitation wavelength and the thermal energy strongly affect to the degradation mechanism. In any cases, the photodegradation of EO polymers is mainly related to the generation of exited singlet oxygen.
Fuma MOTOYAMA Koichi KOBAYASHI Yuh YAMASHITA
A Boolean network (BN) is well known as a discrete model for analysis and control of complex networks such as gene regulatory networks. Since complex networks are large-scale in general, it is important to consider model reduction. In this paper, we consider model reduction that the information on fixed points (singleton attractors) is preserved. In model reduction studied here, the interaction graph obtained from a given BN is utilized. In the existing method, the minimum feedback vertex set (FVS) of the interaction graph is focused on. The dimension of the state is reduced to the number of elements of the minimum FVS. In the proposed method, we focus on complement and absorption laws of Boolean functions in substitution operations of a Boolean function into other one. By simplifying Boolean functions, the dimension of the state may be further reduced. Through a numerical example, we present that by the proposed method, the dimension of the state can be reduced for BNs that the dimension of the state cannot be reduced by the existing method.
Jerdvisanop CHAKAROTHAI Katsumi FUJII Yukihisa SUZUKI Jun SHIBAYAMA Kanako WAKE
In this study, we develop a numerical method for determining transient energy deposition in biological bodies exposed to electromagnetic (EM) pulses. We use a newly developed frequency-dependent finite-difference time-domain (FD2TD) method, which is combined with the fast inverse Laplace transform (FILT) and Prony method. The FILT and Prony method are utilized to transform the Cole-Cole model of biological media into a sum of multiple Debye relaxation terms. Parameters of Debye terms are then extracted by comparison with the time-domain impulse responses. The extracted parameters are used in an FDTD formulation, which is derived using the auxiliary differential equation method, and transient energy deposition into a biological medium is calculated by the equivalent circuit method. The validity of our proposed method is demonstrated by comparing numerical results and those derived from an analytical method. Finally, transient energy deposition into human heads of TARO and HANAKO models is then calculated using the proposed method and, physical insights into pulse exposures of the human heads are provided.
Chiaki TAKASAKA Kazuyuki SAITO Masaharu TAKAHASHI Tomoaki NAGAOKA Kanako WAKE
Various electromagnetic (EM) wave applications have become commonplace, and humans are frequently exposed to EM waves. Therefore, the effect of EM waves on the human body should be evaluated. In this study, we focused on the specific absorption rate (SAR) due to the EM waves emitted from smartphones, developed high-resolution numerical smartphone models, and studied the SAR variation by changing the position and tilt angle (the angle between the display of the smartphone model and horizontal plane) of the smartphone models vis-à-vis the human abdomen, assuming the use of the smartphone at various tilt angles in front of the abdomen. The calculations showed that the surface shape of the human model influenced the SAR variation.
Chao WANG Michihiko OKUYAMA Ryo MATSUOKA Takahiro OKABE
Water detection is important for machine vision applications such as visual inspection and robot motion planning. In this paper, we propose an approach to per-pixel water detection on unknown surfaces with a hyperspectral image. Our proposed method is based on the water spectral characteristics: water is transparent for visible light but translucent/opaque for near-infrared light and therefore the apparent near-infrared spectral reflectance of a surface is smaller than the original one when water is present on it. Specifically, we use a linear combination of a small number of basis vector to approximate the spectral reflectance and estimate the original near-infrared reflectance from the visible reflectance (which does not depend on the presence or absence of water) to detect water. We conducted a number of experiments using real images and show that our method, which estimates near-infrared spectral reflectance based on the visible spectral reflectance, has better performance than existing techniques.
Kiadtisak SALAYONG Titipong LERTWIRIYAPRAPA Kittisak PHAEBUA Prayoot AKKARAEKTHALIN Hsi-Tseng CHOU
This paper proposes fabrication process of a pyramidal electromagnetic (EM) absorber made by natural rubber. The advantage of this research is to generate value-added latex from Thai rubber and to reduce number of chemical absorber by using natural rubber based absorber. The proposed absorber in the research is mainly made from latex with carbon black filler. The proposed absorber is in the form of rubber foam which provides suitable characteristics to serve as an EM absorber. The results of this research are chemical formulas for fabrication of pyramidal rubber foam with carbon black filler. The fabrication cost is very low when compared to an available commercial absorber. The electrical properties of the proposed EM absorber are measured. Also the reflectivity is measured and compared well with a commercial EM absorber.
Kentaro TOKORO Shunsuke SAITO Kensaku KANOMATA Masanori MIURA Bashir AHMMAD Shigeru KUBOTA Fumihiko HIROSE
We report room-temperature atomic layer deposition (ALD) of SnO2 using tetramethyltin (TMT) as a precursor and plasma-excited humidified argon as an oxidizing gas and investigate the saturation behaviors of these gases on SnO2-covered Si prisms by IR absorption spectroscopy to determine optimal precursor/oxidizer injection conditions. TMT is demonstrated to adsorb on the SnO2 surface by reacting with surface OH groups, which are regenerated by oxidizing the TMT-saturated surface by plasma-excited humidified argon. We provide a detailed discussion of the growth mechanism. We also report the RT ALD application to the RT TFT fabrication.
Wataru KOBAYASHI Naoki FUJIWARA Takahiko SHINDO Yoshitaka OHISO Shigeru KANAZAWA Hiroyuki ISHII Koichi HASEBE Hideaki MATSUZAKI Mikitaka ITOH
We propose a novel structure that can reduce the power consumption and extend the transmission distance of an electro-absorption modulator integrated with a DFB (EADFB) laser. To overcome the trade-off relationship of the optical loss and chirp parameter of the EA modulator, we integrate a semiconductor optical amplifier (SOA) with an EADFB laser. With the proposed SOA assisted extended reach EADFB laser (AXEL) structure, the LD and SOA sections are operated by an electrically connected input port. We describe a design for AXEL that optimizes the LD and SOA length ratio when their total operation current is 80mA. By using the designed AXEL, the power consumption of a 10-Gbit/s, 1.55-µm EADFB laser is reduced by 1/2 and at the same time the transmission distance is extended from 80 to 100km.
Naokatsu YAMAMOTO Kouichi AKAHANE Toshimasa UMEZAWA Tetsuya KAWANISHI
A quantum dot (QD) electro-absorption device was successfully developed with a highly stacked InAs/InGaAlAs QD structure. A 1.55-µm waveband electro-absorption effect and a quantum confined Stark effect of approximately 22 meV under the application of a 214-kV/cm reverse bias electric field are clearly observed in the developed QD device.
Jingjing SHI Jerdvisanop CHAKAROTHAI Jianqing WANG Kanako WAKE Soichi WATANABE Osamu FUJIWARA
With the rapid increase of various uses of wireless communications in modern life, the high microwave and millimeter wave frequency bands are attracting much attention. However, the existing databases on above 6GHz radio-frequency (RF) electromagnetic (EM) field exposure of biological bodies are obviously insufficient. An in-vivo research project on local and whole-body exposure of rats to RF-EM fields above 6GHz was started in Japan in 2013. This study aims to perform a dosimetric design for the whole-body-average specific absorption rates (WBA-SARs) of unconstrained rats exposed to 6GHz RF-EM fields in a reverberation chamber (RC). The required input power into the RC is clarified using a two-step evaluation method in order to achieve a target exposure level in rats. The two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC exposure system, is used as an evaluation method to determine the whole-body exposure level in the rats. In order to verify the validity of the two-step method, we use S-parameter measurements inside the RC to experimentally derive the WBA-SARs with rat-equivalent phantoms and then compare those with the FDTD-calculated ones. It was shown that the difference between the two-step method and the S-parameter measurements is within 1.63dB, which reveals the validity and usefulness of the two-step technique.
Akihiro TATENO Tomoaki NAGAOKA Kazuyuki SAITO Soichi WATANABE Masaharu TAKAHASHI Koichi ITO
With the development and diverse use of wireless radio terminals, it is necessary to estimate the specific absorption rate (SAR) of the human body from such devices under various exposure situations. In particular, tablet computers may be used for a long time while placed near the abdomen. There has been insufficient evaluation of the SAR for the human body from tablet computers. Therefore, we investigated the SAR of various configurations of a commercial tablet computer using a numerical model with the anatomical structures of Japanese males and females, respectively. We find that the 10-g-averaged SAR of the tablet computer is strongly altered by the tablet's orientation, i.e., from -7.3dB to -22.6dB. When the tablet computer is moved parallel to the height direction, the relative standard deviations of the 10-g averaged SAR for the male and female models are within 40%. In addition, those for the different tilts of the computer are within 20%. The fluctuations of the 10-g-averaged SAR for the seated human models are within ±1.5dB in all cases.
P. Pungboon PANSILA Kensaku KANOMATA Bashir AHMMAD Shigeru KUBOTA Fumihiko HIROSE
Gallium oxide is expected as a channel material for thin film transistors. In the conventional technologies, gallium oxide has been tried to be fabricated by atomic layer deposition (ALD) at high temperatures from 100--450$^{circ}$C, although the room-temperature (RT) growth has not been developed. In this work, we developed the RT ALD of gallium oxide by using a remote plasma technique. We studied trimethylgallium (TMG) adsorption and its oxidization on gallium oxide surfaces at RT by infrared absorption spectroscopy (IRAS). Based on the adsorption and oxidization characteristics, we designed the room temperature ALD of Ga$_{2}$O$_{3}$. The IRAS indicated that TMG adsorbs on the gallium oxide surface by consuming the adsorption sites of surface hydroxyl groups even at RT and the remote plasma-excited water and oxygen vapor is effective in oxidizing the TMG adsorbed surface and regeneration of the adsorption sites for TMG. We successfully prepared Ga$_{2}$O$_{3}$ films on Si substrates at RT with a growth per cycle of 0.055,nm/cycle.
P. Pungboon PANSILA Kensaku KANOMATA Bashir AHMMAD Shigeru KUBOTA Fumihiko HIROSE
Nitrogen adsorption on thermally cleaned Si(100) surfaces by pure and plasma excited NH$_{3}$ is investigated by extit{in situ} IR absorption spectroscopy and ex-situ X-ray photoelectron spectroscopy with various temperatures from RT (25$^{circ}$C) to 800$^{circ}$C and with a treatment time of 5,min. The nitrogen coverage after the treatment varies according to the treatment temperature for both pure and plasma excited NH$_{3}$. In case of the pure NH$_{3}$, the nitrogen coverage is saturated as low as 0.13--0.25 mono layer (ML) while the growth of the nitride film commenced at 550$^{circ}$C. For the plasma excited NH$_{3}$, the saturation coverage was measured at 0.54,ML at RT and it remained unincreased from RT to 550$^{circ}$C. This indicates that the plasma excited NH$_{3}$ enhances the nitrogen adsorption near at RT. It is found that main species of N is Si$_{2}=$ NH in case of the plasma excited NH$_{3}$ at RT while the pure NH$_{3}$ treatment gives rise to the Si--NH$_{2}$ passivation with Si--H at RT. We discuss the mechanism of the nitrogen adsorption on Si(100) surfaces with the plasma excited NH$_{3}$ in comparison with the study on the pure NH$_{3}$ treatment.
Go FUJII Masahiro UKIBE Shigetomo SHIKI Masataka OHKUBO
Superconducting tunnel junction (STJ) array detectors can exhibit excellent performance with respect to energy resolution, detection efficiency, and counting rate in the soft X-ray energy range, by which those excellent properties STJ array detectors are well suited for detecting X-rays at synchrotron radiation facilities. However, in order to achieve a high throughput analysis for trace impurity elements such as dopants in structural or functional materials, the sensitive area of STJ array detectors should be further enlarged up to more than 10 times larger by increasing the pixel number in array detectors. In this work, for a large STJ-pixel number of up to 1000 within a 10,mm- square compact chip, we have introduced three-dimensional (3D) structure by embedding a wiring layer in a SiO$_{2}$ isolation layer underneath a base electrode layer of STJs. The 3D structure is necessary for close-packed STJ arrangement, avoiding overlay of lead wiring, which is common in conventional two-dimensional layout. The fabricated STJ showed excellent current-voltage characteristics having low subgap currents less than 2,nA, which are the same as those of conventional STJs. An STJ pixel has an energy resolution of 31,eV (FWHM) for C-K$alpha $ (277,eV).
The combination of a halogen-free solvent 1,2,4-trimethylbenzene and unmodified fullerene potentially provides a way to develop environmentally-friendly and cost-effective solution-processed organic photocells. In this paper, the thermal annealing effect on the optical absorption spectra in poly(3-hexylthiophene):unmodified-C$_{60}$ composites with various compositions is reported. It is found that the onset temperature of the absorption spectrum change is higher in the composites with higher fullerene content. It is speculated that strong interaction between the polymer main chain and C$_{60}$ tends to suppress the reorientation of polymer main chains in a composite with high C$_{60}$ content.
Akihiro TATENO Shimpei AKIMOTO Tomoaki NAGAOKA Kazuyuki SAITO Soichi WATANABE Masaharu TAKAHASHI Koichi ITO
As the electromagnetic (EM) environment is becoming increasingly diverse, it is essential to estimate specific absorption rates (SARs) and temperature elevations of pregnant females and their fetuses under various exposure situations. This study presents calculated SARs and temperature elevations in a fetus exposed to EM waves. The calculations involved numerical models for the anatomical structures of a pregnant Japanese woman at gestational stages of 13, 18, and 26 weeks; the EM source was a wireless portable terminal placed close to the abdomen of the pregnant female model. The results indicate that fetal SARs and temperature elevations are closely related to the position of the fetus relative to the EM source. We also found that, although the fetal SAR caused by a half-wavelength dipole antenna is sometimes comparable to or slightly more than the International Commission Non-Ionizing Radiation Protection guidelines, it is lower than the guideline level in more realistic situations, such as when a planar inverted-F antenna is used. Furthermore, temperature elevations were significantly below the threshold set to prevent the child from being born with developmental disabilities.
Jingjing SHI Jerdvisanop CHAKAROTHAI Jianqing WANG Kanako WAKE Soichi WATANABE Osamu FUJIWARA
This paper aims to achieve a high-quality exposure level quantification of whole-body average-specific absorption rates (WBA-SARs) for small animals in a medium-size reverberation chamber (RC). A two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC-type exposure system, has been used as an evaluation method to determine the whole-body exposure level in small animals. However, there is little data that quantitatively demonstrate the validity and accuracy of this method in an RC up to now. In order to clarify the validity of the two-step method, we compare the physical quantities in terms of electric field strength and WBA-SARs by using a direct numerical assessment method known as the method of moments (MoM) with ten homogenous gel phantoms placed in an RC with 2GHz exposure. The comparison results show that the relative errors between the two-step method and the MoM approach are approximately below 10%, which reveals the validity and usefulness of the two-step technique. Finally, we perform a dosimetric analysis of the WBA-SARs for anatomical mouse models with the two-step method and determine the input power related to our developed RC-exposure system to achieve a target exposure level in small animals.
Nozomu ISHII Lira HAMADA Soichi WATANABE
A novel method for calibrating the probes used in standard measurement systems to evaluate SAR (specific absorption rate) of the radio equipment operating at frequencies over 3GHz is proposed. As for the proposed method, the electric-field distribution produced by a waveguide aperture installed in a liquid container is used to calibrate the SAR probe. The field distribution is shown to be the same as that given by a conventional calibration method by analytically deriving a closed-form expression for the field produced by the waveguide aperture with the help of the paraxial approximation. Comparing the approximated and measured distributions reveals that the closed-form expression is valid for the electric-field distribution near the central axis of the aperture. The calibration factor for a commercial SAR probe is evaluated by the proposed method and agrees well with that provided by the manufacturer of the probe.