The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] resist(299hit)

281-299hit(299hit)

  • Durable and Low Power-Loss Semiconductor Devices for Specific Automotive Applications

    Tsutomu MATSUSHITA  Teruyoshi MIHARA  Masakatsu HOSHI  Minoru AOYAGI  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1819-1826

    We have developed new DMOS FET (DMOS) and intelligent power devices (IPD) specified for automotive load driving. Their features are extra-high surge immunity and low on-resistance. MOS power semiconductor devices are the most suitable for driving high speed and large current loads in future car electronics, but their high cost is the main obstacle preventing their implementation. To cut the total system cost, we have tried to enhance surge immunity of power semiconductor devices, at the same time reducing ON resistance, which enables us to omit external protection. Enhanced avalanche power dissipation also enables us to lower the breakdown voltage of the device, which also brings lower on-resistance. The drain to source avalanche immunity of vertical type DMOS (VDMOS) has been sharply improved by using the parasitic PN junction of the channel diffusion region as the cellular zener diode. Avalanche power dissipation energy per unit area of this durable DMOS is 10 to 100 times higher than that of conventional VDMOSs. Although the breakdown voltage of this device is only 30V, no external protection device is required in automotive applications. Several fault phenomena which might occur in this device are also described. Two types of IPDs are proposed in this paper. One is a durable and low-cost high-side switch IPD, whose enhanced surge immunity of IC section from VDD line transient is verified by prototypes. Simplification of the fabrication process has also been achieved by lowering its breakdown voltage. The other is an extra-low on-resistance H-bridge IPD. Major on-resistance reduction of an output lateral type DMOS (LDMOS) is achieved because the cell-array structure is realized by applying 2-layer electrode technology to the power section. The on-resistance per unit area of this LDMOS is almost equal to that of VDMOSs in the same voltage class.

  • Silicon Integrated Injection Logic Operating up to 454

    Masayoshi TAKEUCHI  Masatoshi MIGITAKA  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1812-1818

    In order to develop silicon ICs operating up to above 450, Integrated Injection Logic (IIL) was chosen. A new structure for IIL was designed through experimental and theoretical studies of pn junctions, transistors, and IIL at high temperatures. A 5-µm design rule was used. The new IIL was fabricated by a specially developed combined process of ion implantation and low temperature epitaxy. The IIL was fully operational from room temperature to 454, and the output amplitude of a nine-stage ring oscillator was about 30 mV at 454. The minimum delay time of the IIL was 22 nsec at 454. The minimum power-delay product was 11 pJ and was one-third of that for IILs fabricated by 10-µm rule at 50.

  • Analysis of Transient Electromagnetic Fields Radiated by Electrostatic Discharges

    Osamu FUJIWARA  Norio ANDOH  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E76-B No:11
      Page(s):
    1478-1480

    For analyzing the transient electromagnetic fields caused by electrostatic discharge (ESD), a new ESD model is presented here. Numerical calculation is also given to explain the distinctive phenomenon being well-recognized in the ESD event.

  • Application of KrF Excimer Laser Lithography to 256 MbDRAM Fabrication

    Sin-ichi FUKUZAWA  Hiroshi YOSHINO  Shinji ISHIDA  Kenji KONDOH  Tsuyoshi YOSHII  Naoaki AIZAKI  

     
    LETTER-Application Specific Memory

      Vol:
    E76-C No:11
      Page(s):
    1665-1669

    256 MbDRAM chips have been fabricated by mix-and-match method using high NA KrF excimer laser stepper and i-line stepper. In the case of KrF stepper, the negative siloxane resist is used for rectangular and wiring patterns and the positive novolak-resin resist is used for hole patterns. Both of these two kinds of resist produce accurate pattern shape, allow-able pattern profile, satisfactory depth of focus and sufficient overlay accuracy for device fabrication in 0.25 µm design rule.

  • A Simple Algorithm for Finding All Solutions of Piecewise-Linear Resistive Circuits

    Kiyotaka YAMAMURA  

     
    PAPER-Nonlinear Circuits and Systems

      Vol:
    E76-A No:10
      Page(s):
    1812-1821

    An efficient algorithm is presented for finding all solutions of piecewise-linear resistive circuits. In this algorithm, a simple sign test is performed to eliminate many linear regions that do not contain a solution. Therefore, the number of simultaneous linear equations to be solved is substantially decreased. This test, in its original form, requires O(Ln2) additions and comparisons in the worst case, where n is the number of variables and L is the number of linear regions. In this paper, an effective technique is proposed that reduces the computational complexity of the sign test to O(Ln). Some numerical examples are given, and it is shown that all solutions can be computed very efficiently. The proposed algorithm is simple and can be easily programmed by using recursive functions.

  • 0.15 µm Gate i-AlGaAs/n-GaAs HIGFET with a 13.3 S/Vcm K-Value

    Hidetoshi MATSUMOTO  Yasunari UMEMOTO  Yoshihisa OHISHI  Mitsuharu TAKAHAMA  Kenji HIRUMA  Hiroto ODA  Masaru MIYAZAKI  Yoshinori IMAMURA  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1373-1378

    We have developed a new HIGFET structure achieving an extremely high K-value of 13.3 S/Vcm with a gate length of 0.15 µm. Self-aligned ion implantation is excluded to suppress a short-channel effect. An i-GaAs cap layer and an n+-GaAs contact layer are employed to reduce source resistance. The threshold voltage shift is as small as 50 mV when the gate length is reduced from 1.5 µm to 0.15 µm. Source resistance is estimated to be 53 mΩcm. We have also developed a new fabrication process that can achieve a shorter gate length than the minimum size of lithography. This process utilizes an SiO2 sidewall formed on the n+-GaAs contact layer to reduce the gate length. A gate length of 0.15 µm can be achieved using 0.35 µm lithography.

  • Structure and Resistivity of BaBiOy, Ba1-xLaxBiO3, and BaBi1-xLaxO3

    Isao SHIME  Shiro KAMBE  Shigetoshi OHSHIMA  Katsuro OKUYAMA  

     
    LETTER

      Vol:
    E76-C No:8
      Page(s):
    1261-1264

    Structure and resistivity of BaBiOy were compared with those of Ba1-xLaxBiO3. Decrease in an average Bi valence from 3.91 to 3.03 for BaBiOy leads to an increase in the lattice parameter c from 4.37 to 4.53 , in the unit cell volume from 81 3 to 87 3, and in the resistivity from 10 Ωcm to 2105 Ωcm. It was found that the increase in the unit cell volume and the resistivity was due to change in the average Bi valence. The resistivity of BaBi1-xLaxO3 was compared with that of BaBiOy and Ba1-xLaxBiO3. We also found that pseudocubic Ba1-xLaxBiO3 remains semiconducting as well as pseudotetragonal BaBiOy. The high resistivity in the Ba1-xLaxBiO3 and the BaBi1-xLaxO3 will be useful to the application for the SIS junction.

  • Development of a Magnetoresistive/Inductive Head and Low Noise Amplifier IC for High Density Rigid Disk Drives

    Norio SAITO  Munekatsu FUKUYAMA  Hideo SUYAMA  Yutaka SODA  Noboru WAKABAYASHI  Tetsuo SEKIYA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1167-1169

    We have fabricated a thin head composed of a double layer magnetoresistive (MR) reproducing element and an inductive recording element for high density rigid disk drives. We have also developed a low noise reproducing amplifier IC whose input noise level is 0.3nV/Hz. Our experimental results indicate that equal electrical potential between the exposed area of the MR element and the medium's surface improves the durability of our MR head.

  • Research Topics and Results on Nonlinear Circuits and Systems

    Tetsuo NISHI  

     
    PAPER

      Vol:
    E76-A No:7
      Page(s):
    1077-1086

    This paper surveyed the research topics and results on nonlinear circuits and systems which have been achieved in Japan or by Japanese researchers (sometimes as co-authors) during the last 20 years. The particular emphasis is placed on the analysis of nonlinear resistive circuits and periodic dynamic circuits.

  • Necessary and Sufficient Conditions for the Basic Equation of Nonlinear Resistive Circuits Containing Ideal Diodes to Have a Unique Solution

    Tetsuo NISHI  Yuji KAWANE  

     
    PAPER-Nonlinear Circuits and Neural Nets

      Vol:
    E76-A No:6
      Page(s):
    858-866

    This paper deals with the uniqueness of a solution of the basic equation obtained from the analysis of resistive circuits including ideal diodes. The equation in consideration is of the type of (A-)X=b, where A is a constant matrix, b a constant vector, X an unknown vector satisfying X 0, and a diagonal matrix whose diagonal elements take the value 0 or 1 arbitrarily. The necessary and sufficient conditions for the equation to have a unique solution X 0 for an arbitrary vector b are shown. Some numerical examples are given for the illustration of the result.

  • Low-Temperature Reactive Ion Etching for Multi-Layer Resist

    Tetsuo SATO  Tomoaki ISHIDA  Masahiro YONEDA  Kazuo NAKAMOTO  

     
    PAPER-Process Technology

      Vol:
    E76-C No:4
      Page(s):
    607-612

    The effects of low temperature etching for sub-half micron multi-layer resist are investigated. The low temperature etching with pure O2 gas provides higher anisotropic profiles than with an additional gas such as Cl2, N2. This is caused by the difference in the formative process of the side wall protection. With pure O2 gas at 80, highly anisotropic profiles for 0.35 µm patterns can be performed while the maximum tolerable width loss is below 0.03 µm.

  • Quarter Micron KrF Excimer Laser Lithography

    Masaru SASAGO  Masayuki ENDO  Yoshiyuki TANI  Satoshi KOBAYASHI  Taichi KOIZUMI  Takahiro MATSUO  Kazuhiro YAMASHITA  Noboru NOMURA  

     
    PAPER-Process Technology

      Vol:
    E76-C No:4
      Page(s):
    582-587

    This paper describes the potential of KrF excimer laser lithography for the development and production of 64 M and 256 Mbit DRAMs on the basis of our recent developed results. Quarter micron KrF excimer laser lithography has been developed. A new chemically amplified positive resist realizes high stability and process compatibility for 0.25 micron line and space patterns and 0.35 micron contact hole patterns. This developed resist is characterized as the increase of dissolution characteristics in exposed areas, and hence means the high resolution is obtained. A multiple interference effect was greatly reduced by using our over coat film or anti-reflective coating. This over coat film has no intermixing to the resist and it is simultaneously removed when the resist is developed. This anti-reflective coating has low etch selectivity to the resist, and hence the over coat film is etched away when etching the substrate. The two major results indicate that the KrF excimer laser lithography is promising for the development of 256 MDRAMs.

  • A Novel Electron Beam Resist System Convertible into Silicate Glass

    Toshio ITO  Miwa SAKATA  Maki KOSUGE  

     
    PAPER-Process Technology

      Vol:
    E76-C No:4
      Page(s):
    588-593

    A glass precursor resist (GPR) is designed on the basis of an idea of conversion of organosilicon polymer to an inorganic substance by lithographic procedure. Developed chemical amplification resist system is composed of poly (di-t-butoxysiloxane) and a photoacid generator. It has a high sensitivity of 1.6 µC/cm2, a resolution of 0.2 µm and an extremely high O2-RIE durability compared with bottom resist. Exposed film changed into silicate glass, and it was confirmed by IR spectra.

  • Effect of the Oil Film Thickness on Corrosion Inhibition of Contact Surface in View of Contact Resistance Characteristics--On the Stearic Acid Coating--

    Terutaka TAMAI  

     
    PAPER-Components

      Vol:
    E76-C No:2
      Page(s):
    318-325

    Reactive gases such air pollution agents as H2S or SO2 usually corrode the electrical contact surfaces. Since corrosion products formed on the surface increase contact resistance, they harmfully degrades contact reliability. To prevent the corrosion of the surface, oil coating on it may be effective. The oil film acts basically as a barrier for reaction between the corrosive gas and the surface. For thin film coating, the corrosion inhibition can not be expected. However, effect of film thickness on the corrosion property has not been clarified. In the present study, in order to clarify the corrosion inhibition of the oil coating for the contacts, the stearic acid coating on Ag (silver) contact surface was studied from view-point of the relationship between the thickness of the coating film and the contact resistance. As results, the effect of the stearic acid coating on corrosion inhibition in the atmosphere contained with H2S 3 ppm was found. However, the corrosion of the surface coated with thin stearic acid film occurred at microscopically scattered thin patiches in the specific pattern of the film. Existing of the optimum thickness of the stearic acid coating which gives both minimum contact resistance and effective corrosion inhibition was found. In the intermediate film thickness, this optimum thickness was induced by the increased contact resistance due to corrosion of the thin film region and insulation property of the stearic acid in the thick film region. Moreovr,it was found that this optimum thickness was affected by corrosion time. At the early stage of corrosion, the optimum thickness was about 200 . However, the corrosion time becomes longer as 700 min, this optimum thickness changed to thick as 1000 . With this increase in the thickness, the contact resistance in the optimum thickness rised to high level. Furthermore, the contact resistance in the optimum thickness decreased with increase in the contact load. However, dependence of the contact load on the optimum thickness was not recognized under a certain corrosion time.

  • A Leapfrog Synthesis of Complex Analog Filters

    Cosy MUTO  Noriyoshi KAMBAYASHI  

     
    PAPER-Analog Circuits and Signal Processing

      Vol:
    E76-A No:2
      Page(s):
    210-215

    Complex filters are used to synthesize real filters in digital signal processing, but few in analog one. In this paper, we propose a leapfrog synthesis of complex analog filters. By shifting frequency response of an LCR network along the ω-axis, we have a complex filter with imaginary resistances, which is called an "LCRRi filter." The complex resonator is then used to simulate series- or parallel-arms of the LCRRi filter. We analyze nonideal properties of the complex resonator due to finite gain-bandwidth product of operational amplifiers and propose a compensation method to put a pole on correct location. Experimental results show good performance of the proposed method.

  • Recent Progress in KrF Excimer Laser Lithography

    Makoto NAKASE  

     
    INVITED PAPER-Opto-Electronics Technology for LSIs

      Vol:
    E76-C No:1
      Page(s):
    26-31

    Reduction in the illumination wavelength for exposure leads to higher resolution while keeping the depth of focus. Thus, KrF excimer laser lithography has been positioned as the next generation lithography tool behind g/i-line optical lithography, and many studies have been investigated. In the early days, the excimer laser lithography had many inherent problems, such as inadequate reliability, difficult maintainability, high operating cost, and low resolution and sensitivity of resist materials. However, the performance of the excimer laser stepper has been improved and chemical amplification resists have been developed for the past decade. At present, KrF excimer lithography has reached the level of trial manufacturing of lower submicron ULSI devices beyond 64 Mbit DRAMs.

  • AC Resistivity and Power Loss of Mn-Zn Ferrites

    Seiichi YAMADA  Etsuo OTSUKI  Tsutomu OTSUKA  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1192-1198

    Ac resistivity and power loss values for Mn-Zn ferrite material have been investigated by electrical and magnetic measurements. The ac resistivity shows an inductive dependency on frequency for the low dc resistive samples or for highly dc resistive ones at high temperature, while a capacitive dependency on frequency was observed for the highly resistive materials at the room temperature. These phenomena were interpreted by the dependence of ac resistivity on the dc resistivity, complex permeability and complex permittivity. The dependency of the power losses on the dc resistivity, temperature and frequence were also examined with analysis of power loss term. Dividing the power loss into hysteresis loss and eddy current loss, the frequency dependence of the eddy current loss was found to vary with the magnitude of the dc resistivity as follows: The eddy current loss of low dc resistive materials depends on the dc resistivity. On the other hand, the eddy current loss for high resistive materials is determined by the ac resistivity, contributed from dielectric loss.

  • Some Considerations of Transient Negative Photoconductivity in Silicon Doped with Gold

    Hideki KIMURA  Norihisa MATSUMOTO  Koji KANEKO  Yukio AKIBA  Tateki KUROSU  Masamori IIDA  

     
    PAPER

      Vol:
    E75-C No:9
      Page(s):
    1036-1042

    After the intrinsic pulsed light illumination, a transient negative photoconductivity (TRANP) was observed in silicon doped with gold. The ambient temperature dependence of the TRANP-current was measured and compared with the simulated results obtained by solving rate equations. The temperature dependence of the peak value of the TRANP-current was in agreement with the simulated result. The activation energy of gold acceptor level obtained from the time constant in the recovery process was also consistent with the simulation. It was cleared from this result that the recovery process is dominated by the electron re-emission from gold acceptor level to the conduction band. It was concluded that the occurrence of the TRANP is well explained by using our model proposed before.

  • Effects of Line Resistance and Parasitic Capacitance on Transmittance Distribution in TFT-LCDs

    Kikuo ONO  Takeshi TANAKA  Jun OHIDA  Junichi OHWADA  Nobutake KONISHI  

     
    PAPER-Electronic Displays

      Vol:
    E75-C No:1
      Page(s):
    93-100

    Transmittance distribution along a horizontal line in LCDs addressed by amorphous silicon TFTs was investigated using measurements and calculations. Nonuniformity of the distribution, in which the transmittance increased with increasing distance from the left edge of the LCD, was observed in a 10 inch diagonal TFT-LCD. The cause of the nonuniformity was attributed to the decrease in voltage drop due to the gate source parasitic capacitance and the increase in gate voltage fall time due to large line resistance, based on the measurements of voltage drops in TFT test elements and calculations considering the decrease in voltage drop. The distribution could be improved by reducing the line resistance and parasitic capacitance in the actual LCD.

281-299hit(299hit)