The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] resist(299hit)

121-140hit(299hit)

  • A Test Structure to Analyze Highly-Doped-Drain and Lightly-Doped-Drain in CMOSFET

    Takashi OHZONE  Kazuhiko OKADA  Takayuki MORISHITA  Kiyotaka KOMOKU  Toshihiro MATSUDA  Hideyuki IWATA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E89-C No:9
      Page(s):
    1351-1357

    A test structure to separately measure sheet resistances of highly-doped-drain (HDD) and lightly-doped-drain (LDD) in LDD-type CMOSFETs with various gate spaces S having sub-100 nm sidewalls was proposed. From the reciprocal of source/drain-resistance R-1 versus S characteristics, the sheet resistance ρH of the high-conductive-region (HCR) corresponding to HDD and the approximate width WLC of the low-conductive-region (LCR) corresponding to LDD could be estimated. Both of ρH and WLC for p- and n-MOS devices were scarcely dependent on the gate voltage. The sidewall-width difference of 40 nm could be sufficiently detected by using the test structure with the S pitch of about 60 nm. The R-1 versus S characteristics showed the unstable resistance variations in the narrow S region less than 0.3 µm, which corresponded to the minimum S for the process used for the test device fabrication and suggested that various micro-loading effects seriously affected on the characteristics.

  • Environmentally Robust Electret Condenser Microphone

    Yoshinobu YASUNO  Yasuhiro RIKO  Nobuhiro FUNAKOSHI  Takeshi SHIMIZU  Goro YAMAUCHI  

     
    LETTER-Engineering Acoustics

      Vol:
    E89-A No:8
      Page(s):
    2226-2229

    We introduced a new electret condenser Microphone (ECM) water repellent coating structure for protection against common hazards, such as water or alcohol. This protection structure is composed of small acoustical holes with a water-repellent coating. The water-repellent coating has a contact angle of more than 150 degrees for water on a small acoustical hole having less than 0.2 mm aperture, which blocks water invasion but allows acoustical transmission. The reliability of the coating was confirmed by several tests, such as long-term immersion in water and alcohol, re-flow soldering test and surface scratching. These tests produced no damage to the coating. The fabricated ECM meets the requirements for the IEC 60526 class 7, which is 30 minutes under water at a depth of 1 meter. The diameter and number of holes is determined both by acoustic characteristics and water resistance.

  • Friction and Contact Resistance through True Contact Interface

    Terutaka TAMAI  

     
    PAPER-Contact Phenomena

      Vol:
    E89-C No:8
      Page(s):
    1122-1128

    The main factor determining for both friction and contact resistance is the true contact area in the contact interface. Contact resistance depends on the size of the true contact area and contaminant films interposed between the contact areas of the interface. Moreover, friction force also depends on the true contact area. In particular, the formation of metallic junctions in the true contact area strongly effects the friction force. Therefore, since both electrical contact and friction force are related to the size of the true contact area, the contact resistance and friction force are considered to be interrelated through true contact areas. For electromechanical devices with sliding contacts such as connector and sliding switches, the contact resistance and friction are important characteristics. In order to obtain low contact resistance, contact load should be higher, but the friction force increases. These are opposite-side problems. In this study, as the contact resistance and friction occur in the same true contact area, the relationship between the contact resistance and friction was expressed in an equation. Moreover, this relationship was examined experimentally on a variety of contact surfaces under different surface conditions.

  • Influence of Ohmic Contact Resistance on Transconductance in AlGaN/GaN HEMT

    Yoshikazu HIROSE  Akira HONSHIO  Takeshi KAWASHIMA  Motoaki IWAYA  Satoshi KAMIYAMA  Michinobu TSUDA  Hiroshi AMANO  Isamu AKASAKI  

     
    LETTER-GaN-Based Devices

      Vol:
    E89-C No:7
      Page(s):
    1064-1067

    The correlation between ohmic contact resistivity (ρc) and transconductance (gm) in AlGaN/GaN high-electron-mobility transistors (HEMTs) was investigated. To characterize ρc precisely, we fabricated a circular transmission line model (c-TLM) pattern adjoined to a field-effect transistor (FET) pattern on an HEMT. By measuring ohmic contact resistance and sheet resistance using the adjoined c-TLM, intrinsic transconductance (gm0), which is not influenced by the source resistance, can be estimated. The gm0 thus obtained is between 179 and 206 mS/mm. Then, it became possible to calculate the correlation between gm and (ρc. We found that ρc should be below 10-5 Ωcm2 for the improvement of gm in AlGaN/GaN HEMT when Rsh 400 Ω/.

  • Epitaxial Growth of SiGe Interband Tunneling Diodes on Si(001) and on Si0.7Ge0.3 Virtual Substrates

    Mathieu STOFFEL  Jing ZHANG  Oliver G. SCHMIDT  

     
    INVITED PAPER

      Vol:
    E89-C No:7
      Page(s):
    921-925

    We present room temperature current voltage characteristics from SiGe interband tunneling diodes epitaxially grown on highly resistive Si(001) substrates. In this case, a maximum peak to valley current ratio (PVCR) of 5.65 was obtained. The possible integration of a SiGe tunnel diode with a strained Si transistor lead us to investigate the growth of SiGe interband tunneling diodes on Si0.7Ge0.3 virtual substrates. A careful optimization of the layer structure leads to a maximum PVCR of 1.36 at room temperature. The latter value can be further increased to 2.26 at 3.7 K. Our results demonstrate that high quality SiGe interband tunneling diodes can be realized, which is of great interest for future memory and high speed applications.

  • Novel Resonant Tunneling Diode Oscillator Capable of Large Output Power Operation

    Youhei OOKAWA  Shigeru KISHIMOTO  Koichi MAEZAWA  Takashi MIZUTANI  

     
    PAPER-THz Devices

      Vol:
    E89-C No:7
      Page(s):
    999-1004

    A novel resonant tunneling diode (RTD) oscillator is proposed, which overcomes the problems of the conventional RTD oscillators, such as the low-frequency spurious oscillation and the bias instability. Our proposal consists of two RTDs connected serially, and the resonator connected to the node between two RTDs. This circuit separates the oscillation node from the bias nodes, and suppresses the above mentioned problems. This relaxes the severe restriction on the RTD area, and makes it possible to supply higher power to a load. Circuit simulation shows that with this circuit more than 2 mW power can be supplied to the 50 Ω resistive load at 100 GHz using RTDs having 105 A/cm2-peak current density and 20 µm2-area. It also shows that the dc-to-RF conversion efficiency is as good as that of conventional ones. Furthermore, we have studied the extension of this oscillator having 4 RTDs connected serially. Circuit simulations revealed that using this circuit the power can be doubled with a good conversion efficiency.

  • Non Resonant Response to Terahertz Radiation by Submicron CMOS Transistors

    Yahya Moubarak MEZIANI  Jerzy USAKOWSKI  Nina DYAKONOVA  Wojciech KNAP  Dalius SELIUTA  Edmundas SIRMULIS  Jan DEVENSON  Gintaras VALUSIS  Frederic BOEUF  Thomas SKOTNICKI  

     
    PAPER-THz Devices

      Vol:
    E89-C No:7
      Page(s):
    993-998

    Experimental investigations on detection of terahertz radiation are presented. We used plasma wave instability phenomenon in nanometer Silicon field effect transistor. A 30 nm gate length transistor was illuminated by THz radiation at room temperature. We observe a maximum signal near to the threshold voltage. This result clearly demonstrates the possibility of plasma wave THz operation of these nanometer scale devices. The response was attributed to a non resonant detection. We also demonstrate the possibility to observe a resonant detection on the same devices.

  • Complex Antenna Factors of Resistor Loaded Dipole Antennas with Coaxial Cable Balun

    Ki-Chai KIM  Takashi IWASAKI  

     
    LETTER-Antennas and Propagation

      Vol:
    E89-B No:4
      Page(s):
    1467-1471

    This letter presents the characteristics of complex antenna factors of a resistor loaded dipole antenna with a balun consisting of two coaxial feeders (coaxial cable balun). The resistor loading is used to realize dipole antennas with higher fidelity than unloaded dipole equivalents. The complex antenna factor for a resistor loaded dipole antenna with coaxial cable balun is derived by extending the power loss concepts. The numerical results show that the series resistor loaded dipole antenna offers higher fidelity than the unloaded dipole. The result of the calculated complex antenna factors are in good agreement with that of the measured results.

  • A Reliable Low-Voltage Low-Distortion MOS Analog Switch

    Chun-Yueh YANG  Chung-Chih HUNG  

     
    LETTER

      Vol:
    E89-A No:2
      Page(s):
    456-458

    A novel low-voltage low-distortion analog sampling switch is proposed in this letter. A "source tracker" techniuqe is used to distinguish the real source terminal of the sampling switch. The turn-on resistance of the sampling switch is kept exactly constant. The modified switch makes the rail-to-rail input signal swing possible for low voltage. TSMC 0.18 µm standard CMOS technology is utilized in this research. Results indicate that much lower Total Harmonic Distortion (THD) is achieved by the proposed circuit. The low THD meets the requirements in the application of the low-voltage low-distortion switched-capacitor circuits.

  • Fabrication of Double-Sided YBa2Cu3O7 Films on CeO2-Buffered Sapphire Substrates by MOD Process

    Mitsugu SOHMA  Kunio KAMIYA  Kenichi TSUKADA  Iwao YAMAGUCHI  Wakichi KONDO  Susumu MIZUTA  Takaaki MANABE  Toshiya KUMAGAI  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    182-185

    Double-sided YBa2Cu3O7 (YBCO) films were successfully prepared on 50-mm-diameter CeO2-buffered sapphire substrates by metalorganic deposition (MOD) process using an acetylacetonate coating solution. Mapping analysis of superconducting current densities (Jc) at 77.3 K revealed that Jc values of the double-sided films indicated in excess of 2 MA/cm2 in the center parts with a small decrease of Jc at the outer side of the specimens. The Jc values of one side (A) are higher than those of the other side (B). Microwave surface resistance (Rs) of sides A and B of the film exhibited 0.57 and 0.60 mΩ, respectively, at 70 K (12 GHz). The difference in the Rs values should be attributed to the slight difference in the Jc values, which arose from the surface morphology of the CeO2 buffer layer and heat treatment conditions during the firing process in MOD.

  • Linear and Compact Floating Node Voltage-Controlled Variable Resistor Circuit

    Muneo KUSHIMA  Motoi INABA  Koichi TANNO  

     
    LETTER

      Vol:
    E89-A No:2
      Page(s):
    459-460

    In this letter, my proposals for a Floating node voltage-controlled Variable Resistor circuit (FVR) are based upon its advantages as linear and compact. The performance of the proposed circuit was confirmed by PSpice simulation. The simulation results are reported in this letter.

  • Microwave Power Dependence Measurement of Surface Resistance of Superconducting Films Using a Dielectric Resonator Method with Circle Fit and Two-Mode Techniques

    Haruhiko OBARA  Shin KOSAKA  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    125-131

    A system was developed to measure the microwave power dependence of the surface resistance superconductor films. The system uses a dielectric resonator method combined with a circle fit technique and a two-mode technique to measure the microwave surface resistance of superconductor films. For validation, this system was used to measure such surface resistance for superconductor films with different surface morphologies. Significant difference in microwave power dependence of surface resistance was observed. This measurement system proved suitable for evaluating superconducting films for passive microwave devices, including high power devices such as transmitting filters.

  • A Method of Precise Estimation of Physical Parameters in LSI Interconnect Structures

    Toshiki KANAMOTO  Tetsuya WATANABE  Mitsutoshi SHIROTA  Masayuki TERAI  Tatsuya KUNIKIYO  Kiyoshi ISHIKAWA  Yoshihide AJIOKA  Yasutaka HORIBA  

     
    PAPER-Interconnect

      Vol:
    E88-A No:12
      Page(s):
    3463-3470

    This paper proposes a new non-destructive methodology to estimate physical parameters for LSIs. In order to resolve the estimation accuracy degradation issue for low-k dielectric films, we employ a parallel-plate capacitance measurement and a wire resistance measurement in our non-destructive method. Due to (1) the response surface functions corresponding to the parallel-plate capacitance measurement and the wire resistance measurement and (2) the searching of the physical parameter values using our cost function and simulated annealing, the proposed method attains higher precision than that of the existing method. We demonstrate the effectiveness of our method by application to our 90 nm SoC process using low-k materials.

  • A Novel Low Complexity Channel Estimator with Frequency Offset Resistance for CDMA

    Jungwoo LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:12
      Page(s):
    4667-4670

    A new channel estimator that does not require a separate frequency offset estimator is proposed. The new algorithm has low complexity and low latency compared to the well-known weighted multi-slot averaging algorithm. The simulation results demonstrate the improved resistance to high Doppler frequency and high frequency offset.

  • An Improvement of Communication Environment for ETC System by Using Transparent EM Wave Absorber

    Hiroshi KURIHARA  Yoshihito HIRAI  Koji TAKIZAWA  Takeo IWATA  Osamu HASHIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:12
      Page(s):
    2350-2357

    When a large-size car exists on the ETC lane (Electronic Toll Collection System), there is the possibility that the interference on the adjacent lane occurs by the scattering waves from one. In this paper, we propose a new improvement method which the transparent EM wave absorber is placed between the ETC lane and the adjacent one in order to suppress the scattering waves from a large-size car. Therefore, we design the transparent EM wave absorber which consists of the transparent resistive and conductive films. Then, this absorber is produced, and its reflection and transmission coefficients are evaluated. In addition, its transmittance in optics is evaluated. As the results, the reflectivity of this absorber is obtained lower than -20 dB in the oblique incident angle from 0to 30at 5.8 GHz circular polarized wave, abbreviated as CP wave, and also the transmittivity is obtain lower than -27 dB in the oblique incident angle from 0to 70, respectively. On the other hand, the transmittance in optics is obtained higher than 60%. Moreover, we study experimentally on the ETC system with placing this absorber between the ETC lane and the adjacent one. We measured the distribution of receiving power on the adjacent lane, when a water sprinkler existed on the ETC lane. As a result, it is confirmed that the receiving power on the adjacent lane could be realized lower than -70.5 dBm, and then a new improvement method has proven to be very useful in the ETC system.

  • Investigation on EM Wave Absorbers by Using Resistive Film with Capacitive Reactance

    Hiroshi KURIHARA  Toshifumi SAITO  Koji TAKIZAWA  Osamu HASHIMOTO  

     
    PAPER-Electronic Materials

      Vol:
    E88-C No:11
      Page(s):
    2156-2162

    It is known that the thickness of the λ/4 type EM wave absorber having a resistive film with the capacitive reactance is thinner than 1/4 wavelength. This paper investigates EM wave absorbers using the resistive film with capacitive reactance. We introduced the impedance into the resistive film, and then clarified the relationship between the impedance and the matching thickness in the single layer EM wave absorber. Practically, we carried out to grasp the impedance of the resistive films, which were prepared using the conductive flake powder. As the results, we have proven that the matching thickness in the single layer EM wave absorber could be realized 0.17 λ-0.09 λ in the frequency range from 2 GHz to 8 GHz by using these resistive films. We also fabricated the single resistive layer and the double resistive layers EM wave absorber using these resistive films for Dedicated Short Range Communications (DSRC) and wireless Local Area Network (LAN), in which the matching thickness could be reduced to 45% and 30%, respectively, as compared with the each absorber using the non-capacitive reactance.

  • Millimeter-Wave Broadband Mixers in New Testing and Measurement Instruments for High Data Rate Signal Analyses

    Masayuki KIMISHIMA  

     
    PAPER

      Vol:
    E88-C No:10
      Page(s):
    1973-1980

    The millimeter-wave (MMW) broadband mixers that are useful for measurement instruments to analyze MMW high data rate signals have been investigated. At first, we propose the specialized RF front-end for analyses of MMW high data rate signals. Next, the required specifications for the 1st mixers of the front-end are estimated, and the design, fabrication, and testing results of Q, V, and W-band monolithic broadband resistive mixers are described. The testing results are compared with performances of the diode mixer designed for V-band. It was found that the resistive mixers have very attractive performances of low conversion loss, good frequency flatness and high third order intercept point (IP3) with low Local (LO) oscillators power. The developed resistive mixers are suitable for the proposed MMW band measurement instruments.

  • Correlation between Contact Resistance Characteristics and Scanning Tunneling Microscopy Images for Ag-Pd Alloy with Some Example Additives

    Terutaka TAMAI  

     
    PAPER-Contact Phenomena

      Vol:
    E88-C No:8
      Page(s):
    1559-1565

    Scanning tunneling microscopy (STM) images indicate a change in tunnel current. The tunnel current strongly depends on the applied voltage between the specimen surface and a probe tip, and also on the work function of the specimen surface. Therefore, STM images are different from optical images. Under a certain applied voltage, the distribution of the work function on the surface is directly related to the image. In the present study, in order to understand the STM images obtained from the contact surface, example surfaces of Ag-Pd alloys with Mg and Cr additives were investigated by STM. The additives are easily oxidized, and their oxides distribute over the surface. Therefore, the effect of the additives on the STM images could be observed. For Ag-Pd-Cr, in the case of both clean and oxidized surfaces, the Cr oxides CrO and Cr2O3 formed on the surface are typical insulators, and sharp projections, such as needles, can be seen in the images which are very different from optical microscopy image. In addition, a high contact resistance was measured. On the other hand, for Ag-Pd-Mg, MgO formed on the surface was conductive, and a smooth surface was obtained, as evidenced by the STM image. Contact resistance was very low. Even if the oxides grew under heating, the same tendencies were observed. The conductivity of oxides on the surface had a great effect on the images obtained. A correlation between the contact resistance and the STM images was found.

  • Low-Speed Sliding Test on New Cu-Sn-Based Composite Materials

    Yoshitada WATANABE  

     
    PAPER-Sliding Contacts

      Vol:
    E88-C No:8
      Page(s):
    1682-1687

    The author prepared new composition of Cu-Sn based composite materials containing lamellar solid lubricants, and measured their performance with focus on contact resistance and the coefficient of friction using a low-speed tribo-meter. Among three kinds of composite materials, the composite material containing 26wt.% of total solid lubricants was lower in both of contact resistance and the coefficient of friction and showed stable characteristics compared with those containing 25wt.% and 35wt.% respectively. The author analyzed the characteristics of these materials using several techniques including BSE image, element analysis through EPMA, and mapping analysis, and examined why the composite material containing 26wt.% of total solid lubricants showed higher performance.

  • 2-D Model for Calculating Current Density Distribution and Flux-Flow Resistivity of MCP BSCCO-2212 Rod during Quenching Process in Self Field

    Jian LI  Mingzhe RONG  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E88-C No:8
      Page(s):
    1659-1663

    This paper presents a 2-D model for calculating the current density distribution and the flux-flow resistivity of a Melt Cast Process BSCCO 2212 rod during the quenching process in self field with large current density. Based on the forces analysis of the flux-line lattice, the equilibrium equation for the 2-D viscous flux motion is derived from the model. With this equation, the current density distribution and the flux density distribution are obtained in not only the critical state but also the flux-flow state. Subsequently, the average flux-flow resistivity is calculated with the knowledge of the 2-D field distribution. The calculation results are in accordance with the experimental results. Finally, the applications of the 2-D model are extended to the superconducting tube and the low-Tc superconductor.

121-140hit(299hit)