The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] resist(300hit)

141-160hit(300hit)

  • Low-Speed Sliding Test on New Cu-Sn-Based Composite Materials

    Yoshitada WATANABE  

     
    PAPER-Sliding Contacts

      Vol:
    E88-C No:8
      Page(s):
    1682-1687

    The author prepared new composition of Cu-Sn based composite materials containing lamellar solid lubricants, and measured their performance with focus on contact resistance and the coefficient of friction using a low-speed tribo-meter. Among three kinds of composite materials, the composite material containing 26wt.% of total solid lubricants was lower in both of contact resistance and the coefficient of friction and showed stable characteristics compared with those containing 25wt.% and 35wt.% respectively. The author analyzed the characteristics of these materials using several techniques including BSE image, element analysis through EPMA, and mapping analysis, and examined why the composite material containing 26wt.% of total solid lubricants showed higher performance.

  • 2-D Model for Calculating Current Density Distribution and Flux-Flow Resistivity of MCP BSCCO-2212 Rod during Quenching Process in Self Field

    Jian LI  Mingzhe RONG  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E88-C No:8
      Page(s):
    1659-1663

    This paper presents a 2-D model for calculating the current density distribution and the flux-flow resistivity of a Melt Cast Process BSCCO 2212 rod during the quenching process in self field with large current density. Based on the forces analysis of the flux-line lattice, the equilibrium equation for the 2-D viscous flux motion is derived from the model. With this equation, the current density distribution and the flux density distribution are obtained in not only the critical state but also the flux-flow state. Subsequently, the average flux-flow resistivity is calculated with the knowledge of the 2-D field distribution. The calculation results are in accordance with the experimental results. Finally, the applications of the 2-D model are extended to the superconducting tube and the low-Tc superconductor.

  • A Broadband Asymmetric Tapered-Line Power Divider with Several Strip Resistors

    Yukihiro TAHARA  Hideyuki OH-HASHI  Moriyasu MIYAZAKI  Seiichi SAITO  

     
    PAPER-Passive Circuits

      Vol:
    E88-C No:7
      Page(s):
    1395-1400

    A novel asymmetric tapered-line power divider is presented. It has several strip resistors which are formed like a ladder between the tapered-line conductors to achieve a good output isolation. The equivalent circuits are derived with the even/odd-mode analysis. These equivalent circuits are employed to design the asymmetric power divider. The fabricated asymmetric power divider with 1:2 power dividing ratio shows broadband performances in return loss and isolation which are greater than 19 dB over a 3:1 bandwidth in the C-Ku bands.

  • Improved Boundary Element Method for Fast 3-D Interconnect Resistance Extraction

    Xiren WANG  Deyan LIU  Wenjian YU  Zeyi WANG  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:2
      Page(s):
    232-240

    Efficient extraction of interconnect parasitic parameters has become very important for present deep submicron designs. In this paper, the improved boundary element method (BEM) is presented for 3-D interconnect resistance extraction. The BEM is accelerated by the recently proposed quasi-multiple medium (QMM) technology, which quasi-cuts the calculated region to enlarge the sparsity of the overall coefficient matrix to solve. An un-average quasi-cutting scheme for QMM, advanced nonuniform element partition and technique of employing the linear element for some special surfaces are proposed. These improvements considerably condense the computational resource of the QMM-based BEM without loss of accuracy. Experiments on actual layout cases show that the presented method is several hundred to several thousand times faster than the well-known commercial software Raphael, while preserving the high accuracy.

  • Weak Security Notions of Cryptographic Unkeyed Hash Functions and Their Amplifiability

    Shoichi HIROSE  

     
    PAPER-Symmetric Key Cryptography

      Vol:
    E88-A No:1
      Page(s):
    33-38

    Cryptographic unkeyed hash functions should satisfy preimage resistance, second-preimage resistance and collision resistance. In this article, weak second-preimage resistance and weak collision resistance are defined following the definition of weak one-wayness. Preimage resistance is one-wayness of cryptographic hash functions. The properties of weak collision resistance is discussed in this article. The same kind of results can be obtained for weak second-preimage resistance. Weak collision resistance means that the probability of failing to find a collision is not negligible, while collision resistance means that the success probability is negligible. It is shown that there really exist weakly collision resistant hash functions if collision resistant ones exist. Then, it is shown that weak collision resistance is amplifiable, that is, collision resistant hash functions can be constructed from weakly collision resistant ones. Unfortunately, the method of amplification presented in this article is applicable only to a certain kind of hash functions. However, the method is applicable to hash functions based on discrete logarithms. This implies that collision resistant hash functions can be obtained even if the discrete logarithm problem is much easier than is believed and only weakly intractable, that is, exponentiation modulo a prime is weakly one-way.

  • Applications of Tree/Link Partitioning for Moment Computations of General Lumped R(L)C Interconnect Networks with Multiple Resistor Loops

    Herng-Jer LEE  Ming-Hong LAI  Chia-Chi CHU  Wu-Shiung FENG  

     
    PAPER-Physical Design

      Vol:
    E87-A No:12
      Page(s):
    3281-3292

    A new moment computation technique for general lumped R(L)C interconnect circuits with multiple resistor loops is proposed. Using the concept of tearing, a lumped R(L)C network can be partitioned into a spanning tree and several resistor links. The contributions of network moments from each tree and the corresponding links can be determined independently. By combining the conventional moment computation algorithms and the reduced ordered binary decision diagram (ROBDD), the proposed method can compute system moments efficiently. Experimental results have demonstrate that the proposed method can indeed obtain accurate moments and is more efficient than the conventional approach.

  • A Fully Integrated Current-Steering 10-b CMOS D/A Converter with On-Chip Terminated Resistors

    Sanghoon HWANG  Minkyu SONG  

     
    PAPER-Integrated Electronics

      Vol:
    E87-C No:12
      Page(s):
    2179-2185

    A fully integrated current-steering 10-b CMOS Digital-to-Analog Converter with on-chip terminated resistors is presented. In order to improve the device-mismatching problem of internal termination resistors, a self-calibrated current bias circuit is designed. With the self-calibrated current bias circuit, the gain error of the output voltage swing is reduced within 0.5%. For the purpose of reducing glitch noises, furthermore, a novel current switch based on a deglitching circuit is proposed. The prototype circuit has been fabricated with a 3 V 0.35 µm 2-poly 3-metal CMOS technology, and it occupies 1350 µm750 µm silicon area with 45 mW power consumption. The measured INL and DNL are within 0.5LSB, respectively. The measured SFDR is about 65 dB, when an input signal is about 8 MHz at 100 MHz clock frequency.

  • A Low-Power High-Frequency CMOS Current-Mirror Sinusoidal Quadrature Oscillator

    Adisorn LEELASANTITHAM  Banlue SRISUCHINWONG  

     
    PAPER-Analog Signal Processing

      Vol:
    E87-A No:11
      Page(s):
    2964-2972

    A low-power high-frequency sinusoidal quadrature oscillator is presented through a new RC technique using only CMOS current mirrors. The technique is relatively simple based on (1) internal capacitances of CMOS current mirrors and (2) a resistor of a CMOS current mirror for a negative resistance. Neither external capacitances nor inductances are required. As a particular example, a 2.4 GHz-0.4 mW, 0.325-fT, CMOS sinusoidal quadrature oscillator has been demonstrated. The power consumption is very low at approximately 0.4 mW. Total harmonic distortions (THD) are less than 0.3%. The oscillation frequency is current-tunable over a range of 540 MHz or 22%. The amplitude matching and the quadrature phase matching are better than 0.035 dB and 0.15, respectively. A figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 158.79 dBc/Hz at the 2 MHz offset from 2.46 GHz. Comparisons to other approaches are also presented.

  • A New Experimental Method for the Determination of Connector Parameters in Insertion and Extraction Phase

    Abdelaaziz EL MANFALOUTI  Noureddine BEN JEMAA  Rochdi EL ABDI  

     
    INVITED PAPER

      Vol:
    E87-C No:8
      Page(s):
    1289-1294

    Inside a connector an interface with low insertion force and contact resistance is required, utilizing low cost materials such as copper alloys surrounded by tin coating. Relating to the application, the operating parameters have a wide range of values of currents, forces and materials. In this paper, we present a new experimental method based on non-intrusive probing of the deflection of the spring terminal with a laser technique. The main feature is that the reflection of the Laser beam onto the spring allows the determination of the contact force of the lamella-spring inside the female part. The technique requires the following insertion parameters during the insertion stroke: contact deflection δ, which allows contact force Fc, insertion force Fi and contact resistance Rc. It was found that the insertion force has a maximum value which decreases to the stable value, and depends on the size and the material of the pin. However contact resistance decreases sharply when first inserting, and tends to stable values on completing the insertion process, which is less sensitive to the pin diameter. Furthermore the final value which is important for the connector characterization is related and discussed. Finally, discrepancies were observed between the experimental and calculated data with simple numerical models. More complex models are in progress, which should improve the convergence of the theoretical approach to experimental results and proceed to the optimization of the connector parameters.

  • Electrical Contacts for Automotive Applications: A Review

    Zhuan-Ke CHEN  Gerald J. WITTER  

     
    PAPER-New Technology and Automotive Applications

      Vol:
    E87-C No:8
      Page(s):
    1248-1254

    The three major failures of electrical contacts for automotive relay applications are: contact welding (or contact sticking), high contact resistance and severe contact erosion due to switching arcing. With the demand of high power and multiple functions of automotive vehicles, the switching current has be dramatically increased, it results in higher failing rate, in particular for contact welding. On the other hand, the miniaturization of electromechanical relays has lead to the reduction of mechanical spring force. This not only results in the earlier contact welding but also makes the relay more susceptible to the contact resistance and arc erosion failures. This paper is a review of most recent studies on these three failure aspects. It describes the progress in the understanding of contact welding caused by short arcing and high contact resistance due to contamination of particles and films in relay manufacturing process and also it review the material transfer due to switching arcing. At the end, the brief considerations of electromechanical relays used in 42 volts have also been given.

  • Surge Current Strength of Electric Power Contacts

    Achim BRENNER  Horst F. NOWACKI  

     
    INVITED PAPER

      Vol:
    E87-C No:8
      Page(s):
    1218-1224

    In this presentation the authors consider in detail the problems relating to parameters like contact normal force, the effective contact areas and the surface plating, which have significant influence onto the surge current strength of electrical power contacts. Obtaining the behaviour of machine turned pin and socket contacts with different pin diameters the parameters of the active contact area radius, the constriction resistance and the constriction temperature are calculated by using FEM for elastic/plastic surface deformation. With the knowledge of the constriction radius the temperature curve of the contact area was determined by coupled electrical/thermal FE calculation. Laboratory tests were carried out in order to verify the FE-calculation.

  • Contact Behaviors of New Material for Micro Relays

    Terutaka TAMAI  Tatsumi IDE  

     
    PAPER-New Technology and Automotive Applications

      Vol:
    E87-C No:8
      Page(s):
    1235-1240

    Ag(40 wt%)-Pd(60 wt%) alloy has been widely applied to contact materials installed in various electromechanical devices. However, in application to the down sized relays, failure due to contact resistance is caused easily by both growth of oxide film on the contact surface and low contact force. To solve the increase in contact resistance, an overlay of thin Au or thin Au-Ag (8-10 wt%) has been used on the alloy. Despite this, cleanliness and low hardness of these overlays cause adhesion, or sticking, at contact interface. Increase in contact resistance and sticking are contrary to each other. In order to eliminate these contrary properties, the author studied improving the Ag-Pd alloy with a dopant. Low level of contact resistance for both static and dynamic contacts of Ag-Pd with Mg doping was found even if the contact surface was covered with an oxide contaminant film. This paper presents the excellent contact resistance and adhesion behaviors of Ag-Pd-Mg alloy and their mechanisms, and also presents in the later part, surface contamination behaviors for organic gases.

  • A Note on the Strength of Weak Collision Resistance

    Shoichi HIROSE  

     
    LETTER

      Vol:
    E87-A No:5
      Page(s):
    1092-1097

    NMAC is a function for message authentication based on cryptographic hash functions such as SHA. It is shown to be a secure message authentication code if its compression function with fixed input length is a secure message authentication code and its iterated hash function with variable input length constructed with the compression function is weakly collision resistant. In this article, two results are shown on the strength of the weak collision resistance of the iterated hash function in NMAC. First, it is shown that the weak collision resistance of the iterated hash function in NMAC is not implied by the pseudorandomness of its compression function even if the MD-strengthening is assumed. Second, the weak collision resistance of the iterated hash function in NMAC implies the collision resistance of its compression function if the compression function is pseudorandom.

  • Two-Sapphire-Rod-Resonator Method to Measure the Surface Resistance of High-Tc Superconductor Films

    Toru HASHIMOTO  Yoshio KOBAYASHI  

     
    PAPER-General Methods, Materials, and Passive Circuits

      Vol:
    E87-C No:5
      Page(s):
    681-688

    Precise designs are presented for sapphire rod resonators of three types, which have been proposed by the IEC/TC90/WG8 in the standard measurement method of the surface resistance Rs of high-Tc superconductor (HTS) films; an open-type, a cavity-type and a closed-type. In order to separate TE011 and TE013 modes, which are used in Rs measurements, from the other modes, appropriate dimensions for these three resonators are determined from mode charts calculated from a rigorous analysis based on the mode matching method, taking account of an uniaxial-anisotropic characteristic of sapphire. Comparison of the open-type resonator with the closed-type is performed. For the open-type, the unloaded Q values of both the TE011 and TE013 modes are reduced by radiations of a leaky state TM310 mode. Finally, validity of the design and a two-sapphire-rod-resonator method will be verified by experiments.

  • CMOS Implementation of a Multiple-Valued Memory Cell Using -Shaped Negative-Resistance Devices

    Katsutoshi SAEKI  Heisuke NAKASHIMA  Yoshifumi SEKINE  

     
    PAPER

      Vol:
    E87-A No:4
      Page(s):
    801-806

    In this paper, we propose the CMOS implementation of a multiple-valued memory cell using -shaped negative-resistance devices. We first propose the construction of a multiple-stable circuit that consists of -shaped negative-resistance devices from four enhancement-mode MOSFETs without a floating voltage source, and connect this in parallel with a unit circuit. It is shown that the movement of -shaped negative-resistance characteristics in the direction of the voltage axis is due to voltage sources. Furthermore, we propose the construction of a multiple-valued memory cell using a multiple-stable circuit. It is shown that it is possible to write and hold data. If the power supply is switched on, it has a feature which enables operation without any electric charge leakage. It is possible, by connecting -shaped negative-resistance devices in parallel, to easily increase the number of multiple values.

  • Doping Effects on the Series Resistance of Conducting Polymers Diode

    Masayuki WADA  Kazuya TADA  Mitsuyoshi ONODA  

     
    PAPER-Nano-interfacial Properties

      Vol:
    E87-C No:2
      Page(s):
    152-157

    A device structure for polymer Schottky diode, which has the glass chimney as a dopant reservoir enabling the reduction of series resistance without cathode corrosion, has been proposed. Doping with the acetonitrile solution of FeCl3 in the device resulted in the increase in the forward-bias current by one order of magnitude without notable increase in reverse-bias current, suggesting that the doping reduced the series resistance. It is found that the penetration speed depends on the solvents. Short time doping with the nitromethane solution of FeCl3 resulted in the increase by three orders of magnitude. However, doping for a long period yielded the considerable increase in the reverse-bias current due to the complete penetration of dopatn solution. When the upper opening of glass chimney of device is left opened and the sample after doping stored in air, the forward-bias current of the device reduced rapidly due to the undoping and/or degradation of polymer. It is possible to protect the degradation of device characteristics after doping, by sealing the chimney and storing the device in vacuum.

  • An 8-GS/s 4-Bit 340 mW CMOS Time Interleaved Flash Analog-to-Digital Converter

    Young-Chan JANG  Sang-Hune PARK  Seung-Chan HEO  Hong-June PARK  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    350-356

    An 8-GS/s 4-bit CMOS analog-to-digital converter (ADC) chip was implemented by using a time interleaved flash architecture for very high frequency mixed signal applications with a 0.18-µm single-poly five-metal CMOS process. Eight 1-GS/s flash ADCs were time-interleaved to achieve the 8-GHz sampling rate. Eight uniformly-spaced 1 GHz clocks were generated by using a phase-locked-loop (PLL) with the peak-to-peak and rms jitters of 29.6 ps and 3.78 ps respectively. An input buffer including a preamplifier array (fifteen preamplifiers, four dummy amplifiers and averaging resistors) was shared among eight 1-GS/s flash ADCs to reduce the input capacitance and the mismatches among eight 1-GS/s flash ADCs. The adjacent output nodes of preamplifiers were connected by a resistor (resistor-averaging) to reduce the effects of the input offset voltage and the load mismatches of preamplifiers. A source follower circuit was added at the output node of a preamplifier to drive eight distributed track and hold (DTH) circuits. The Input bandwidth of ADC was measured to be 2.5 GHz. The measured SFDR values at the sampling rate of 8-GS/s were 25 dB and 22 dB for the 1.033 GHz and 2.5 GHz sinusoidal input signals respectively. The power consumption and the active input voltage range were 340 mW and 700 mV peak-to-peak, respectively, at the sampling rate of 8-GS/s and the supply voltage of 1.8 V. The active chip area was 1.32 mm2.

  • An Auction Protocol Preserving Privacy of Losing Bids with a Secure Value Comparison Scheme

    Koji CHIDA  Kunio KOBAYASHI  Hikaru MORITA  

     
    PAPER-Applications

      Vol:
    E87-A No:1
      Page(s):
    173-181

    A new approach for electronic sealed-bid auctions that preserve the privacy of losing bids is presented. It reduces the number of operations performed by the auctioneers to O(log ); previous protocols require O(N ) or O(N log ) where the number of bidders is N and that of available bidding prices is . Namely, the number of auctioneers' operations in our auction protocol is independent of the number of bidders. This feature offers strong advantages in massive auctions. We also propose a new scheme that checks the equality of two values without disclosing them. The scheme enhances our basic auction protocol, in terms of security and communication costs.

  • Wide-Input Range Variable Resistor Circuit Using an FG-MOSFET

    Muneo KUSHIMA  Koichi TANNO  Okihiko ISHIZUKA  

     
    LETTER-Analog Signal Processing

      Vol:
    E86-A No:12
      Page(s):
    3294-3296

    In this letter, a linear variable resistor circuit using an FG-MOSFET (floating-gate MOSFET) is proposed. This is based on Schlarmann's variable resistor and is very simple. The advantage of the proposed circuit is a wide-input range. The utility of the proposed circuit was confirmed by HSPICE simulation with 1.2 µm CMOS process parameters. The simulation results are reported in this letter.

  • Transient Phenomenon of Electromagnetic Waves by Time-Dependent Resistive Screen in Waveguide

    Michinari SHIMODA  Ryuichi IWAKI  Masazumi MIYOSHI  Oleg A. TRETYAKOV  

     
    PAPER

      Vol:
    E86-C No:11
      Page(s):
    2176-2183

    The transient phenomenon of electromagnetic waves caused by a time dependent resistive screen in a waveguide is treated. A boundary-value problem is formulated to describe the phenomena, in which the resistivity of the screen varies from one steady state to another in dependence on time. Application of Fourier analysis derives an integral equation, which is approximately solved by the method of least-squares. From the solution of the equation, the transient field is obtained by the inverse Fourier transform. By the use of the incomplete Lipschitz-Hankel integral for the computation of the field, numerical examples showing typical transient phenomenon are attached.

141-160hit(300hit)