The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tunnel(159hit)

21-40hit(159hit)

  • Type-II HfS2/MoS2 Heterojunction Transistors

    Seiko NETSU  Toru KANAZAWA  Teerayut UWANNO  Tomohiro AMEMIYA  Kosuke NAGASHIO  Yasuyuki MIYAMOTO  

     
    BRIEF PAPER

      Vol:
    E101-C No:5
      Page(s):
    338-342

    We experimentally demonstrate transistor operation in a vertical p+-MoS2/n-HfS2 van der Waals (vdW) heterostructure configuration for the first time. The HfS2/MoS2 heterojunction transistor exhibits an ON/OFF ratio of 104 and a maximum drain current of 20 nA. These values are comparable with the corresponding reported values for vdW heterojunction TFETs. Moreover, we study the effect of atmospheric exposure on the subthreshold slope (SS) of the HfS2/MoS2 transistor. Unpassivated and passivated devices are compared in terms of their SS values and IDS-VGS hysteresis. While the unpassivated HfS2/MoS2 heterojunction transistor exhibits a minimum SS value of 2000 mV/dec, the same device passivated with a 20-nm-thick HfO2 film exhibits a significantly lower SS value of 700 mV/dec. HfO2 passivation protects the device from contamination caused by atmospheric moisture and oxygen and also reduces the effect of surface traps. We believe that our findings will contribute to the practical realization of HfS2-based vdW heterojunction TFETs.

  • Possibilities of Large Voltage Swing Hard-Type Oscillators Based on Series-Connected Resonant Tunneling Diodes

    Koichi MAEZAWA  Masayuki MORI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    305-310

    Hard-type oscillators for ultrahigh frequency applications were proposed based on resonant tunneling diodes (RTDs) and a HEMT trigger circuit. The hard-type oscillators initiate oscillation only after external excitation. This is advantageous for suppressing the spurious oscillation in the bias line, which is one of the most significant problems in the RTD oscillators. We first investigated a series-connected circuit of a resistor and an RTD for constructing a hard-type oscillator. We carried out circuit simulation using the practical device parameters. It was demonstrated that the stable oscillation can be obtained for such oscillators. Next, we proposed to use series-connected RTDs for the gain block of the hard-type oscillators. The series circuits of RTDs show the negative differential resistance in very narrow regions, or no regions at all, which makes impossible to use such circuits for the conventional soft-type oscillators. However, with the trigger circuit, they can be used for hard-type oscillators. We confirmed the oscillation and the bias stability of these oscillators, and also demonstrated that the voltage swing can be easily increased by increasing the number of RTDs connected in series. This is promising method to overcome the power restriction of the RTD oscillators.

  • Phase Locking and Frequency Tuning of Resonant-Tunneling-Diode Terahertz Oscillators

    Kota OGINO  Safumi SUZUKI  Masahiro ASADA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E101-C No:3
      Page(s):
    183-185

    Phase locking with frequency tuning is demonstrated for a resonant-tunneling-diode terahertz oscillator integrated with a biased varactor diode. The tuning range of oscillation frequency is 606-613GHz. The phase noise in the output of the oscillator is transformed to amplitude noise, and fed back to the varactor diode together with bias voltage. The spectral linewidth at least <2Hz was obtained at the oscillation frequencies tuned by the bias voltage of the varactor diode.

  • Energy-Efficient and Highly-Reliable Nonvolatile FPGA Using Self-Terminated Power-Gating Scheme

    Daisuke SUZUKI  Takahiro HANYU  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1618-1624

    An energy-efficient nonvolatile FPGA with assuring highly-reliable backup operation using a self-terminated power-gating scheme is proposed. Since the write current is automatically cut off just after the temporal data in the flip-flop is successfully backed up in the nonvolatile device, the amount of write energy can be minimized with no write failure. Moreover, when the backup operation in a particular cluster is completed, power supply of the cluster is immediately turned off, which minimizes standby energy due to leakage current. In fact, the total amount of energy consumption during the backup operation is reduced by 66% in comparison with that of a conventional worst-case-based approach where the long time write current pulse is used for the reliable write.

  • Analysis of Relaxation Oscillation in a Resonant Tunneling Diode Integrated with a Bow-Tie Antenna

    Naoto OKUMURA  Kiyoto ASAKAWA  Michihiko SUHARA  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    430-438

    In general, tunnel diodes exhibit various types of oscillation mode: the sinusoidal mode or the nonsinusoidal mode which is known as the relaxation oscillation (RO) mode. We derive a condition for generating the RO in resonant tunneling diodes (RTDs) with essential components for equivalent circuit model. A conditional equation to obtain sufficient nonlinearity towards the robust RO is clarified. Moreover, its condition also can be applied in case of a bow-tie antenna integrated RTD, thus a design policy to utilize the RO region for the antenna integrated RTD is established by numerical evaluations of time-domain large-signal nonlinear analysis towards a terahertz transmitter for broadband wireless communications.

  • Clutter Suppression Method of Iron Tunnel Using Cepstral Analysis for Automotive Radars

    Han-Byul LEE  Jae-Eun LEE  Hae-Seung LIM  Seong-Hee JEONG  Seong-Cheol KIM  

     
    PAPER-Sensing

      Pubricized:
    2016/08/17
      Vol:
    E100-B No:2
      Page(s):
    400-406

    In this paper, we propose an efficient clutter suppression algorithm for automotive radar systems in iron-tunnel environments. In general, the clutters in iron tunnels makes it highly likely that automotive radar systems will fail to detect targets. In order to overcome this drawback, we first analyze the cepstral characteristic of the iron tunnel clutter to determine the periodic properties of the clutters in the frequency domain. Based on this observation, we suggest for removing the periodic components induced by the clutters in iron tunnels in the cepstral domain by using the cepstrum editing process. To verify the clutter suppression of the proposed method experimentally, we performed measurements by using 77GHz frequency modulated continuous waveform radar sensors for an adaptive cruise control (ACC) system. Experimental results show that the proposed method is effective to suppress the clutters in iron-tunnel environments in the sense that it improves the early target detection performance for ACC significantly.

  • STM Study on Adsorption Structures of Cs on the As-Terminated GaAs(001) (2×4) Surface by Alternating Supply of Cs and O2

    Masayuki HIRAO  Daichi YAMANAKA  Takanori YAZAKI  Jun OSAKO  Hokuto IIJIMA  Takao SHIOKAWA  Hikota AKIMOTO  Takashi MEGURO  

     
    PAPER

      Vol:
    E99-C No:3
      Page(s):
    376-380

    Negative electron affinity (NEA) surfaces can be formed by alternating supply of alkali metals (e.g. Cs, Rb, K) and oxygen on semiconductor surfaces. We have studied adsorption structures of Cs on an As-terminated (2×4) (001) GaAs surface using scanning tunneling microscopy (STM). We found that the initial adsorption of Cs atoms occurs around the step sites in the form of Cs clusters and that the size of clusters is reduced by successive exposure to O2, indicating that As-terminated (2×4) surfaces are relatively stable compared to Ga-terminated surfaces and are not broken by the Cs clusters adsorption.

  • Improvement of Single-Electron Digital Logic Gates by Utilizing Input Discretizers

    Tran THI THU HUONG  Hiroshi SHIMADA  Yoshinao MIZUGAKI  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:2
      Page(s):
    285-292

    We numerically demonstrated the improvement of single-electron (SE) digital logic gates by utilizing SE input discretizers (IDs). The parameters of the IDs were adjusted to achieve SE tunneling at the threshold voltage designed for switching. An SE four-junction inverter (FJI) with an ID (ID-FJI) had steep switching characteristics between the high and low output voltage levels. The limiting temperature and the critical parameter margins were evaluated. An SE NAND gate with IDs also achieved abrupt switching characteristics between output logic levels.

  • Photoluminescence Characterisation of High Current Density Resonant Tunnelling Diodes for Terahertz Applications Open Access

    Kristof J. P. JACOBS  Benjamin J. STEVENS  Richard A. HOGG  

     
    INVITED PAPER

      Vol:
    E99-C No:2
      Page(s):
    181-188

    High structural perfection, wafer uniformity, and reproducibility are key parameters for high-volume, low cost manufacture of resonant tunnelling diode (RTD) terahertz (THz) devices. Low-cost, rapid, and non-destructive techniques are required for the development of such devices. In this paper, we report photoluminescence (PL) spectroscopy as a non-destructive characterisation technique for high current densityInGaAs/AlAs/InP RTD structures grown by metal-organic vapour phase epitaxy (MOVPE) for THz applications. By using a PL line scanning technique across the edge of the sample, we identify characteristic luminescence from the quantum well (QW) and the undoped/n+ InGaAs layers. By using the Moss-Burstein effect, we are able to measure the free-electron concentration of the emitter/collector and contact layers in the RTD structure. Whilst the n+ InGaAs luminescence provides information on the doping concentration, information on the alloy composition and compositional variation is extracted from the InGaAs buffer layer. The QW luminescence provides information on the average well width and provides a monitor of the structural perfection with regard to interface and alloy disorder.

  • Performance Evaluation of Virtualized LTE-EPC Data Plane with MPLS Core Using PPBP Machine-to-Machine Traffic

    Hussien M. HUSSIEN  Hussein A. ELSAYED  

     
    PAPER

      Vol:
    E99-B No:2
      Page(s):
    326-336

    3GPP Long Term Evolution (LTE) is one of the most advanced technologies in the wireless and mobility field because it provides high speed data and sophisticated applications. LTE was originally deployed by service providers on various platforms using separate dedicated hardware in Access radio layer and the Evolved Packet Core network layer (EPC), thereby limiting the system's flexibility and capacity provisioning. Thus, the concept of virtualization was introduced in the EPC hardware to solve the dedicated hardware platform limitations. It was also introduced in the IP Multimedia Subsystem (IMS) and Machine to Machine applications (M2M) for the same reason. This paper provides a simulation model of a virtualized EPC and virtualized M2M transport application server connected via an external IP network, which has significant importance in the future of mobile networks. This model studies the virtualized server connectivity problem, where two separate virtual machines communicate via the existing external legacy IP network. The simulation results show moderate performance, indicating that the selection of IP technology is much more critical than before. The paper also models MPLS technology as a replacement for the external IP routing mechanism to provide traffic engineering and achieve more efficient network performance. Furthermore, to provide a real network environment, Poisson Pareto Burst Process (PPBP) traffic source is carried over the UDP transport layer which matches the statistical properties of real-life M2M traffic. Furthermore, the paper proves End-to-End interoperability of LTE and MPLS running GTP and MPLS Label Forwarding information Base (LFIB) and MPLS traffic engineering respectively. Finally, it looks at the simulation of several scenarios using Network Simulator 3 (NS-3) to evaluate the performance improvement over the traditional LTE IP architecture under M2M traffic load.

  • Power Combination in 1 THz Resonant-Tunneling-Diode Oscillators Integrated with Patch Antennas

    Kouhei KASAGI  Naoto OSHIMA  Safumi SUZUKI  Masahiro ASADA  

     
    BRIEF PAPER

      Vol:
    E98-C No:12
      Page(s):
    1131-1133

    In this study, we propose and fabricate an oscillator array composed of three resonant-tunneling-diode terahertz oscillators integrated with slot-coupled patch antennas, and which does not require a Si lens. We measure the radiation pattern for single and arrayed oscillator, and calculate the output power using the integration of the pattern. The output power of a single oscillator was found to be ~15 µW. However, using an array configuration, almost combined output power of ~55 µW was obtained.

  • Resonant Tunneling Super Regenerative Detectors Detecting Higher Frequency Signals than Their Free-Running Oscillation Frequency

    Jie PAN  Yuichiro KAKUTANI  Taishu NAKAYAMA  Masayuki MORI  Koichi MAEZAWA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E98-C No:3
      Page(s):
    260-266

    Super regenerative detectors using a resonant tunneling diode (RTD) were fabricated and investigated for ultra-high frequency detectors. A key point is to use the RTD super regenerative detector for detecting much higher frequencies than the free-running oscillation frequency of the detector. This is possible owing to the superior high frequency characteristics of the RTDs. This has various advantages, such as circuit simplicity, easy design, and low power consumption. Clear detection of 50,GHz signal was demonstrated with a super regenerative detector which has 1.5,GHz free-running frequency. Moreover, detailed experiments revealed that the frequency dependence of the detection efficiency is smooth, and the harmonic frequencies have no effect. This is advantageous for high frequency detection.

  • Development of Array Detectors with Three-Dimensional Structure toward 1000 Pixels of Superconducting Tunnel Junctions

    Go FUJII  Masahiro UKIBE  Shigetomo SHIKI  Masataka OHKUBO  

     
    BRIEF PAPER

      Vol:
    E98-C No:3
      Page(s):
    192-195

    Superconducting tunnel junction (STJ) array detectors can exhibit excellent performance with respect to energy resolution, detection efficiency, and counting rate in the soft X-ray energy range, by which those excellent properties STJ array detectors are well suited for detecting X-rays at synchrotron radiation facilities. However, in order to achieve a high throughput analysis for trace impurity elements such as dopants in structural or functional materials, the sensitive area of STJ array detectors should be further enlarged up to more than 10 times larger by increasing the pixel number in array detectors. In this work, for a large STJ-pixel number of up to 1000 within a 10,mm- square compact chip, we have introduced three-dimensional (3D) structure by embedding a wiring layer in a SiO$_{2}$ isolation layer underneath a base electrode layer of STJs. The 3D structure is necessary for close-packed STJ arrangement, avoiding overlay of lead wiring, which is common in conventional two-dimensional layout. The fabricated STJ showed excellent current-voltage characteristics having low subgap currents less than 2,nA, which are the same as those of conventional STJs. An STJ pixel has an energy resolution of 31,eV (FWHM) for C-K$alpha $ (277,eV).

  • A Novel Optimal Social Trust Path Selection Algorithm for Large-Scale Complex Social Networks

    Lianggui LIU  Huiling JIA  

     
    PAPER-Internet

      Vol:
    E97-B No:9
      Page(s):
    1910-1920

    With the phenomenal explosion in online services, social networks are becoming an emerging ubiquitous platform for numerous services where service consumers require the selection of trustworthy service providers before invoking services with the help of other intermediate participants. Under this circumstance, evaluation of the trustworthiness of the service provider along the social trust paths from the service consumer to the service provider is required and to this end, selection of the optimal social trust path (OSTP) that can yield the most trustworthy evaluation result is a pre-requisite. OSTP selection with multiple quality of trust (QoT) constraints has been proven to be NP-Complete. Heuristic algorithms with polynomial and pseudo-polynomial-time complexities are often used to deal with this problem. However, existing solutions cannot guarantee the search efficiency, that is, they have difficulty in avoiding suboptimal solutions during the search process. Quantum annealing uses delocalization and tunneling to avoid local minima without sacrificing execution time. Several recent studies have proven that it is a promising way to tackle many optimization problems. In this paper, we propose a novel quantum annealing based OSTP selection algorithm (QA_OSTP) for large-scale complex social networks. Experiments show that QA_OSTP has better performance than its heuristic counterparts.

  • InGaAs/Si Heterojunction Tunneling Field-Effect Transistor on Silicon Substrate

    Sung YUN WOO  Young JUN YOON  Jae HWA SEO  Gwan MIN YOO  Seongjae CHO  In MAN KANG  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    677-682

    In this work, a gate-all-around (GAA) tunneling field-effect transistor (TFET) with InGaAs/Si heterojunction for high-performance and low-standby power operations is studied. Gallium (Ga) compositon ($x)$ in In$_{1-x}$Ga$_{x}$As source substantially affects the physical properties related with device performances including lattice constant, bandgap energy, effective tunneling mass, channel mobility, and others. Thus, it is worthy investigating the effect of Ga fraction on performances of the proposed heterojunction TFET. For this goal, the device design and its performance evaluation are carried out by technology computer-aided design (TCAD). Direct-current (DC) performances are investigated in terms of on-state current ($I_{ m{on}})$, off-state current ($I_{ m{off}})$, current ratio ($I_{ m{on}}$/$I_{ m{off}})$, and subthreshold swing ($S$). Furthermore, it is shown that the device with an n-type Si insertion layer between source and channel demonstrates the enhanced DC characteristics.

  • Data Spoofing Attacks by IPv6 Tunnels

    Yu CUI  Zhi-Hong TIAN  Bin-Xing FANG  Hong-Li ZHANG  Wei-Zhe ZHANG  

     
    PAPER-Internet

      Vol:
    E96-B No:11
      Page(s):
    2875-2882

    Tunneling is one of the main methods for the transition from IPv4 to IPv6 networks. By encapsulating IPv6 packets in IPv4 or UDP packets, tunnels like 6to4, Isatap and Teredo provide a feasible way for IPv4 hosts to establish IPv6 connections to hosts in IPv6 internet or IPv6 islands. For IPv4 internet, the use of tunnels varies the traffic and increases the type of packets, making the network environment more complex. In addition to common tunnels, various types of tunnels with more layers are tested in this paper. The results of successful connections prove the usefulness of multi-layer packets with diverse layer-count and type on the internet. To ensure the security of internal networks, the influence on traffic analysis in dual-stack IDS devices caused by the diversity is studied. Three spoofing attacks of “data insertion”, “data evasion” and “attacks using UDP” are proposed to show the influence on IDS caused by tunnels. Compared to the attacks without tunnels, some constraining factors are eliminated, which may increase the security risk of IDS and decrease the attacker's difficulties. To summarize this kind of problem, the concept of “Tunnel Interference” is revealed. And as solutions to this problem, two methods, RA (Record All) and HEH (Hash for Each Header), are presented in this paper which theoretically solve these problems to a great extent. RA records all headers and compares from the outermost to innermost layer. HEH is hash-based and accumulates hash values of each header. Both of them have linear time and space complexity. Experimental results show that RA and HEH will lead to minor space increase and up to 1.2% time increment in each layer compared to the original dual-stack.

  • Rigorous Design and Analysis of Tunneling Field-Effect Transistor with Hetero-Gate-Dielectric and Tunneling-Boost n-Layer

    Jae Hwa SEO  Jae Sung LEE  Yun Soo PARK  Jung-Hee LEE  In Man KANG  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    644-648

    A gate-all-around tunneling field-effect transistor (GAA TFET) with local high-k gate-dielectric and tunneling-boost n-layer based on silicon is demonstrated by two dimensional (2D) device simulation. Application of local high-k gate-dielectric and n-layer leads to reduce the tunneling barrier width between source and intrinsic channel regions. Thus, it can boost the on-current (Ion) characteristics of TFETs. For optimal design of the proposed device, a tendency of device characteristics has been analyzed in terms of the high-k dielectric length (Lhigh-k) for the fixed n-layer length (Ln-layer). The simulation results have been analyzed in terms of on- and off-current (Ion and Ioff), subthreshold swing (SS), and RF performances.

  • Implementation of Reflection on Curved Surfaces and Physical Optics in Ray Tracing for Tunnel Propagation

    Yukiko KISHIKI  Jun-ichi TAKADA  Gilbert Siy CHING  Hajime TAKAO  Yoshihiro SUGIHARA  Shigeaki MATSUNAGA  Fumiya UESAKA  

     
    PAPER-Radiowave Propagation

      Vol:
    E96-C No:1
      Page(s):
    42-50

    For the modeling of multipath propagation in every wireless systems, the ray tracing method has been widely studied. However, large errors may result due to the approximation of geometrical optics in curved surfaces. This paper therefore focused on the curved surfaces and edges, which are difficult to handle in ray tracing. Examples of curved surfaces can be found in arched cross-section tunnels which are common in highway networks of mountainous areas. The traditional ray tracing method of dividing the curved surface into smaller flat plates is not so accurate as the size of smaller plates may not satisfy the geometrical optics assumption, and the reflection point which satisfies Fermat's principle may not exist. In this work, a new ray tracing method is proposed with 2 contributions. The first one is the implementation of the reflection coefficient for curved surfaces in ray tracing. The second is applying the physical optics method on the caustics region. To evaluate these methods, path gain simulation results for an arched cross-section model are compared with measurements made inside an arched tunnel. To further improve the simulation results, the effect of rough surface is introduced, and the results are again compared with measurement.

  • A Proposal of High-Performance Samplers Based on Resonant Tunneling Diodes

    Koichi MAEZAWA  Jie PAN  Dongpo WU  Masayuki MORI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E95-C No:11
      Page(s):
    1830-1833

    A novel type of millimeter/submillimeter wave sampler based on resonant tunneling diodes (RTDs) was proposed, and its operation was confirmed by circuit simulation. It consists of an RTD pulse generator and an RTD detector. Owing to the fuse-like nonlinear I-V curve, highly sensitive sampling can be obtained. We also found that the effects of non-ideality in the I-V curve of the RTD can be corrected by sweeping the DC bias for the RTD detector.

  • Time-Domain Analysis of Large-Signal-Based Nonlinear Models for a Resonant Tunneling Diode with an Integrated Antenna

    Kiyoto ASAKAWA  Yosuke ITAGAKI  Hideaki SHIN-YA  Mitsufumi SAITO  Michihiko SUHARA  

     
    PAPER-Emerging Devices

      Vol:
    E95-C No:8
      Page(s):
    1376-1384

    Large-signal-based nonlinear models are developed to analyze a variety of dynamic performances in a resonant tunneling diode (RTD) with peripheral circuits such as an integrated broad band bow-tie antenna, a bias circuit and a bias stabilizer circuit. Dynamic modes of the RTD are classified by the time-domain analysis with the model. On the basis of our model, we suggest a possibility to discuss a terahertz order oscillation mode control, and the ASK modulation in several tens Gbit/sec in the RTD with the broad band antenna. Validity of the model and analysis is shown by explaining measured results of modulated oscillation signals in fabricated triple-barrier RTDs.

21-40hit(159hit)