The search functionality is under construction.

IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.72

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E92-B No.6  (Publication Date:2009/06/01)

    Special Section on 3rd Pan-Pacific EMC Joint Meeting -- PPEMC'08--
  • FOREWORD Open Access

    Yoshio KAMI  

     
    FOREWORD

      Page(s):
    1919-1919
  • Prediction of EM Radiation from a PCB Driven by a Connected Feed Cable

    Yoshiki KAYANO  Hiroshi INOUE  

     
    PAPER

      Page(s):
    1920-1928

    Printed circuit boards (PCBs) driven by a connected feed cable are considered to be one of the main sources of the electromagnetic interference (EMI) from electronic devices. In this paper, a method for predicting the electromagnetic (EM) radiation from a PCB driven by a connected feed cable at up to gigahertz frequencies is proposed and demonstrated. The predictive model is based on the transmission line theory and current- and voltage-driven CM generation mechanisms with consideration of antenna impedance. Frequency responses of differential-mode (DM) and common-mode (CM) currents and far-electric field were investigated experimentally and with finite-difference time-domain (FDTD) modeling. First, the dominant component in total EM radiation from the PCB was identified by using the Source-Path-Antenna model. Although CM can dominate the total radiation at lower frequencies, DM is the dominant component above 3 GHz. Second, the method for predicting CM component at lower frequencies is proposed. And its validity was discussed by comparing FDTD calculated and measured results. Specifically, the relationship between the CM current and the terminating resistor was focused as important consequence for the prediction. Good agreement between the measured and predicted results shows the validity of the predicted results. The proposed model can predict CM current with sufficient accuracy, and also identify the primary coupling-mechanism of CM generation. Then far-electric field was predicted by using the proposed method, and it was demonstrated that outline of the frequency response of the undesired EM radiation from the PCB driven by the connected feed cable can be predicted with engineering accuracy (within 6 dB) up to 18 GHz. Finally, as example of application of equivalent circuit model to EMC design, effect of the width of the ground plane was predicted and discussed. The equivalent circuit model provides enough flexibility for different geometrical parameters and increases our ability to provide insights and design guidelines.

  • Increase of Common-Mode Radiation due to Guard Trace Voltage and Determination of Effective Via-Location Open Access

    Tohlu MATSUSHIMA  Tetsushi WATANABE  Yoshitaka TOYOTA  Ryuji KOGA  Osami WADA  

     
    PAPER

      Page(s):
    1929-1936

    A guard trace placed near a signal line reduces common-mode radiation from a printed circuit board. The reduction effect is evaluated by the imbalance difference model, which was proposed by the authors, when the guard trace has exactly the same potential as the return plane. However, depending on interval of ground connection of the guard trace, the radiation can increase when the guard trace resonates. In this paper, the authors show that the increase of radiation is caused by the common mode, and extend the imbalance difference model to explain a mechanism of increase of common-mode radiation. Additionally, the effective via location of the guard trace is proposed to reduce the number of vias. The guard trace voltage due to the resonance excites the common mode at the interface where the cross-sectional structure of the transmission line changes since the common-mode excitation is expressed by the product of the voltage and the difference of current division factors. To suppress the common-mode excitation, the guard trace should be grounded at the point where the cross-sectional structure changes. As a result, the common-mode radiation decreases even when the guard trace resonates.

  • Importance and Limitations of Modeling Parasitic Capacitance between Package and PCB for Power Bus Noise and Radiation

    Umberto PAOLETTI  Takashi HISAKADO  Osami WADA  

     
    PAPER

      Page(s):
    1937-1944

    Power and ground planes on multilayer PCBs can effectively radiate electromagnetic fields excited by the IC simultaneous switching noise. The high frequency electromagnetic radiation is often calculated from the electric field along the edge of the PCB, which can be estimated with a cavity model using magnetic walls. The excitation of the cavity modes is related to the via current passing through the power bus planes at the interconnection between IC package and PCB. Usually the attention is focused on the differential-mode current of the package pins, but in the present paper it is shown that the common-mode current flowing out from package pins plays a very important role in the excitation of cavity modes, and its neglect implies a fatal underestimation of the electromagnetic radiation from the power bus planes in some circumstances. A second important contribute to the radiation is given by the common mode current on the pins, together with the current flowing on the PCB ground plane. With the proposed equivalent circuit, the effectiveness of decoupling inductors depending on their location and on the value of the parasitic capacitance is studied.

  • Crosstalk Analysis for Embedded-Line Structure at PCB Using Circuit-Concept Approach

    Sang-Wook PARK  Fengchao XIAO  Yoshio KAMI  

     
    PAPER

      Page(s):
    1945-1952

    An analytical method for estimating coupling between microstrip lines in arbitrary directions on adjacent layers in multi-layer printed circuit boards is studied: one line is embedded and the other is on the surface layer. Coupling or crosstalk has been estimated by development of a circuit-concept approach based on modified telegrapher's equations of the Agrawal approach instead of the Taylor approach for some computational advantages. Electromagnetic fields from the embedded microstrip line and the microstrip line on the surface can be obtained by using the electric image method for dielectric substrates. To verify the proposed approach, we conducted some experiments and compared the results of our approach with those of measurement and a commercial electromagnetic solver.

  • Analytical Solution for Two Parallel Traces on PCB in the Time Domain with Application to Hairpin Delay Lines

    Fengchao XIAO  Kimitoshi MURANO  Yoshio KAMI  

     
    PAPER

      Page(s):
    1953-1959

    In this paper the time-domain analysis of two parallel traces is investigated. First, the telegrapher's equations for transmission line are applied to the parallel traces on printed circuit board (PCB), and are solved by using the mode decomposition technique. The time-domain solutions are then obtained by using the inverse Laplace transform. Although the Fourier-transform technique is also applicable for this problem, the solution is given numerically. Contrarily, the inverse Laplace transform successfully leads to an analytical expression for the transmission characteristics. The analytical expression is represented by series, which clearly explains the coupling mechanism. The analytical expression for the fundamental section of a meander delay line is investigated in detail. The analytical solution is validated by measurements, and the characteristics of the distortions in the output waveforms of meander delay lines due to the crosstalk are also investigated.

  • FDTD Simulation Based on Spark Resistance Formula for Electromagnetic Fields due to Spark between Charged Metal Bars with Ferrite Core Attachment

    Soichiro TAIRA  Osamu FUJIWARA  

     
    PAPER

      Page(s):
    1960-1964

    The electromagnetic fields emitted from an electrostatic discharge (ESD) event occurring between charged metals cause seriously damage high-tech equipment. In order to clarify the generation mechanism of such ESD fields and also to reduce them, we previously proposed a finite-difference time-domain (FDTD) algorithm based on a delta-gap feeding method and a frequency dispersion characteristic formula (Naito's formula) of ferrite material for simulating the ESD fields due to a spark between the charged metals with ferrite core attachment. In the present study, by integrating the above FDTD algorithm and a spark-resistance formula, we simulated both of the ESD itself and the resultant fields for the metal bars with ferrite core attachment, and demonstrated that the core attachment close to the spark gap suppresses the magnetic field level. This finding was also validated via 6-GHz wide-band measurement of the magnetic near-field.

  • A Method for Estimating Wideband Transients Using Transmission Loss of High Performance Semi-Rigid Coaxial Cable

    Ken KAWAMATA  Shigeki MINEGISHI  Yoshinori TAKA  Osamu FUJIWARA  

     
    PAPER

      Page(s):
    1965-1968

    The very fast transients of micro-gap discharges driven by low voltage electrostatic discharging (ESDs) are investigated in the time domain. We previously developed a 12 GHz wideband measurement setup consisting of a distributed constant line system, however the observed transients due to micro-gap discharges had very fast rise times of 34 ps or less, which reached the limitation on our system. In this paper, we proposed a method for estimating wideband transients beyond the measurement limit by using the transmission loss of a high performance coaxial transmission line. The proposed method is validated by estimating an impulsive voltage waveform with rise/fall time of 16 ps from the waveform measured through a semi-rigid coaxial cable with a length of 10 m.

  • The Effect of Position of a Connector Contact Failure on Electromagnetic Near-Field around a Coaxial Cable

    Yu-ichi HAYASHI  Hideaki SONE  

     
    PAPER

      Page(s):
    1969-1973

    A transmission line created by cables adjoined by connectors is influenced by noise from connectors with contact failure, and such noise degrades communication quality. The authors used a model of a connector with increased contact resistance in a coaxial cable and measured the electromagnetic near-field around a cable while changing positions of the model. In this paper, the result shows that the radiated electromagnetic field has no relationship with the position along the cable of a connector with increased contact resistance, when the contact condition of connector, contact resistance value, measurement position, and length of a transmission line are constant.

  • Calculation of Electromagnetic Field Emitted from UTP Cable by Moment Method from 0.3 GHz to 2 GHz

    Nobuo KUWABARA  Yasuhiro ISHIDA  Masato KAWABATA  

     
    PAPER

      Page(s):
    1974-1980

    The electromagnetic field emitted from UTP cable has been calculated by the 4-port network method from 30 MHz to 1 GHz. However it has not been clarified as to whether this method was effective in the frequency range of more than 1 GHz or not. In this paper, the electromagnetic field emitted from UTP cable was calculated by the moment method and it was compared with the calculated results by the 4-port network method. The wire grid model was developed to represent the propagation constants of UTP cable. The comparison of calculated and measured results confirms the validity of the model. A hybrid coupler was used to generate differential mode signal for the measurement. The comparison indicated that the calculated results by the moment method closely agreed with the measured results in the frequency range of 0.3 to 2 GHz and the difference was smaller than the results by the 4-port network method.

  • Regular Section
  • Unsupervised Anomaly Detection Based on Clustering and Multiple One-Class SVM

    Jungsuk SONG  Hiroki TAKAKURA  Yasuo OKABE  Yongjin KWON  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    1981-1990

    Intrusion detection system (IDS) has played an important role as a device to defend our networks from cyber attacks. However, since it is unable to detect unknown attacks, i.e., 0-day attacks, the ultimate challenge in intrusion detection field is how we can exactly identify such an attack by an automated manner. Over the past few years, several studies on solving these problems have been made on anomaly detection using unsupervised learning techniques such as clustering, one-class support vector machine (SVM), etc. Although they enable one to construct intrusion detection models at low cost and effort, and have capability to detect unforeseen attacks, they still have mainly two problems in intrusion detection: a low detection rate and a high false positive rate. In this paper, we propose a new anomaly detection method based on clustering and multiple one-class SVM in order to improve the detection rate while maintaining a low false positive rate. We evaluated our method using KDD Cup 1999 data set. Evaluation results show that our approach outperforms the existing algorithms reported in the literature; especially in detection of unknown attacks.

  • Performance Analysis of a De-correlated Modified Code Tracking Loop for Synchronous DS-CDMA System under Multiuser Environment

    Ya-Ting WU  Wai-Ki WONG  Shu-Hung LEUNG  Yue-Sheng ZHU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    1991-1999

    This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).

  • Performance Analysis of the ertPS Algorithm and Enhanced ertPS Algorithm for VoIP Services in IEEE 802.16e Systems

    Bong Joo KIM  Gang Uk HWANG  

     
    PAPER-Network

      Page(s):
    2000-2007

    In this paper, we analyze the extended real-time Polling Service (ertPS) algorithm in IEEE 802.16e systems, which is designed to support Voice-over-Internet-Protocol (VoIP) services with data packets of various sizes and silence suppression. The analysis uses a two-dimensional Markov Chain, where the grant size and the voice packet state are considered, and an approximation formula for the total throughput in the ertPS algorithm is derived. Next, to improve the performance of the ertPS algorithm, we propose an enhanced uplink resource allocation algorithm, called the e 2rtPS algorithm, for VoIP services in IEEE 802.16e systems. The e 2rtPS algorithm considers the queue status information and tries to alleviate the queue congestion as soon as possible by using remaining network resources. Numerical results are provided to show the accuracy of the approximation analysis for the ertPS algorithm and to verify the effectiveness of the e 2rtPS algorithm.

  • Policy Gradient SMDP for Resource Allocation and Routing in Integrated Services Networks

    Ngo Anh VIEN  Nguyen Hoang VIET  SeungGwan LEE  TaeChoong CHUNG  

     
    PAPER-Network

      Page(s):
    2008-2022

    In this paper, we solve the call admission control (CAC) and routing problem in an integrated network that handles several classes of calls of different values and with different resource requirements. The problem of maximizing the average reward (or cost) of admitted calls per unit time is naturally formulated as a semi-Markov Decision Process (SMDP) problem, but is too complex to allow for an exact solution. Thus in this paper, a policy gradient algorithm, together with a decomposition approach, is proposed to find the dynamic (state-dependent) optimal CAC and routing policy among a parameterized policy space. To implement that gradient algorithm, we approximate the gradient of the average reward. Then, we present a simulation-based algorithm to estimate the approximate gradient of the average reward (called GSMDP algorithm), using only a single sample path of the underlying Markov chain for the SMDP of CAC and routing problem. The algorithm enhances performance in terms of convergence speed, rejection probability, robustness to the changing arrival statistics and an overall received average revenue. The experimental simulations will compare our method's performance with other existing methods and show the robustness of our method.

  • Robust Node Positioning in Wireless Sensor Networks

    Ayong YE  Jianfeng MA  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Network

      Page(s):
    2023-2031

    Secure sensor localization is a prerequisite for many sensor networks to retrieve trustworthy data. However, most of existing node positioning systems were studied in trust environment and are therefore vulnerable to malicious attacks. In this work, we develop a robust node positioning mechanism(ROPM) to protect localization techniques from position attacks. Instead of introducing countermeasures for every possible internal or external attack, our approach aims at making node positioning system attack-tolerant by removing malicious beacons. We defeat internal attackers and external attackers by applying different strategies, which not only achieves robustness to attacks but also dramatically reduces the computation overhead. Finally, we provide detailed theoretical analysis and simulations to evaluate the proposed technique.

  • Modeling and Analysis of Hybrid Cellular/WLAN Systems with Integrated Service-Based Vertical Handoff Schemes

    Weiwei XIA  Lianfeng SHEN  

     
    PAPER-Network

      Page(s):
    2032-2043

    We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.

  • Fast Packet Classification Using Multi-Dimensional Encoding

    Chi Jia HUANG  Chien CHEN  

     
    PAPER-Internet

      Page(s):
    2044-2053

    Internet routers need to classify incoming packets quickly into flows in order to support features such as Internet security, virtual private networks and Quality of Service (QoS). Packet classification uses information contained in the packet header, and a predefined rule table in the routers. Packet classification of multiple fields is generally a difficult problem. Hence, researchers have proposed various algorithms. This study proposes a multi-dimensional encoding method in which parameters such as the source IP address, destination IP address, source port, destination port and protocol type are placed in a multi-dimensional space. Similar to the previously best known algorithm, i.e., bitmap intersection, multi-dimensional encoding is based on the multi-dimensional range lookup approach, in which rules are divided into several multi-dimensional collision-free rule sets. These sets are then used to form the new coding vector to replace the bit vector of the bitmap intersection algorithm. The average memory storage of this encoding is θ (LNlog N) for each dimension, where L denotes the number of collision-free rule sets, and N represents the number of rules. The multi-dimensional encoding practically requires much less memory than bitmap intersection algorithm. Additionally, the computation needed for this encoding is as simple as bitmap intersection algorithm. The low memory requirement of the proposed scheme means that it not only decreases the cost of packet classification engine, but also increases the classification performance, since memory represents the performance bottleneck in the packet classification engine implementation using a network processor.

  • Application Oriented Flow Routing Algorithm for VoIP Overlay Networks

    Komwut WIPUSITWARAKUN  Sanon CHIMMANEE  

     
    PAPER-Internet

      Page(s):
    2054-2064

    Overlay networks which are dynamically created over underlying IP networks are becoming widely used for delivering multimedia contents since they can provide several additional user-definable services. Multiple overlay paths between a source-destination overlay node pair are designed to improve service robustness against failures and bandwidth fluctuation of the underlying networks. Multimedia traffic can be distributed over those multiple paths in order to maximize paths' utilization and to increase application throughputs. Most of flow-based routing algorithms consider only common metrics such as paths' bandwidth or delay, which may be effective for data applications but not for real-time applications such as Voice over IP (VoIP), in which different levels of such performance metrics may give the same level of the performance experienced by end users. This paper focuses on such VoIP overlay networks and proposes a novel alternative path based flow routing algorithm using an application-specific traffic metric, i.e. "VoIP Path Capacity (VPCap)," to calculate the maximum number of QoS satisfied VoIP flows which may be distributed over each available overlay path at a moment. The simulation results proved that more QoS-satisfied VoIP sessions can be established over the same multiple overlay paths, comparing to traditional approaches.

  • 2-Step Maximum Likelihood Channel Estimation for Multicode DS-CDMA with Frequency-Domain Equalization

    Yohei KOJIMA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2065-2071

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.

  • Non-coherent Receivers for Orthogonal Space-Time CPM

    Tarkesh PANDE  Heon HUH  James KROGMEIER  David LOVE  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2072-2084

    Continuous phase modulation (CPM) is a non-linear modulation technique whose power and bandwidth efficiency make it an attractive choice for mobile communication systems. Current research has focused on devising encoding rules for using CPM over multiple-input multiple-output (MIMO) systems in order to obtain the improved bit error rate (BER) and high data rates promised by MIMO technology. In this paper, optimal and suboptimal non-coherent receivers for a class of CPM signals called orthogonal space-time CPM (OST-CPM) are derived under a quasi-static fading channel assumption. The performance of these receivers is characterized and shown to achieve the same diversity order as that of the corresponding optimal coherent receiver.

  • Frequency Domain Nulling Filter and Turbo Equalizer in Suppression of Interference for One-Cell Reused Single-Carrier TDMA Systems Open Access

    Chantima SRITIAPETCH  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2085-2094

    This paper proposes a frequency domain nulling filter and Turbo equalizer to suppress interference in the uplink of one-cell reuse single-carrier time division multiple access (TDMA) systems. In the proposed system, the desired signal in a reference cell is interfered by interference signals including adjacent-channel interference (ACI), co-channel interference (CCI), and intersymbol interference (ISI). At the transmitter, after a certain amount of spectrum is nulled considering the expected CCI, the suppressed power due to nulling is reallocated to the remaining spectrum components so as to keep the total transmit power constant. In this process, when mitigation of ACI is necessary, after a certain amount of spectrum at both edges is nulled using an edge-removal filter, the aforementioned process is conducted. At the receiver, frequency domain SC/MMSE Turbo equalizer (FDTE) is employed to suppress ISI due to spectrum nulling process in the transmitter as well as the multipath fading. Computer simulations confirm that the proposed scheme is effective in suppression of CCI, ACI and ISI in one-cell reuse single-carrier TDMA systems.

  • Impacts of the SCA Core Framework on High Speed Broadband Waveform in SDR Handheld System

    Sangchul OH  Namhoon PARK  Ohjun KWON  Yeongjin KIM  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2095-2101

    In this paper, we have shown a major element occupying the large portion of software communications architecture (SCA)-based software defined radio (SDR) handheld embedded system and an important feature for implementing a high speed broadband radio to an SCA waveform through a couple of experiments. First, this paper identifies the main items possessing the large portion of SCA-based SDR handheld embedded system by the experiment on the target platform which is similar to a commercial mobile handheld system. Both the world interoperabillity for microwave access (WiMAX) and high speed downlink packet access (HSDPA) waveform software packages are used as an SCA waveform application. This paper also presents the results of the relative binary size distribution of SCA software resources for looking for the major elements making an SCA-based SDR handheld embedded system heavier. As a result, when focusing on the relative weight portion of SCA core framework (CF), the SCA CF takes 16% up and others have 84% out of the whole binary size distribution of SCA software resources. The results of the experiment give us notice that the weight portion of SCA CF is minor and compatible with the overall software binary size needs of an SCA-based SDR handheld embedded system, on the other hand, the practical problem on the lightweight is in a common object request broker architecture (CORBA) and extensible markup language (XML) parser resources. Second, this paper describes an important feature for implementing a high speed broadband radio to an SCA waveform and presents the performance evaluation results of the SCA port communication on both power PC (PPC) 405 and x86 processor platforms. The PPC 405 platform, which is similar to a commercial mobile handset, takes the value of average round trip time (RTT) with a maximum of thirty six millisecond. The x86 platform, however, which is analogous to a server platform, maintains stable micro-second resolution. From our experiments, we observe that rapid SCA port communication, sufficiently less than the frame length of high-speed broadband radios, should be provided for serving those radio services in a commercial handheld system based on the SCA.

  • Nonorthogonal Pulse Position Modulation for Time-Hopping Multiple Access UWB Communications

    Hao ZHANG  T. Aaron GULLIVER  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2102-2111

    In this paper, we study the capacity and performance of nonorthogonal pulse position modulation (NPPM) for Ultra-Wideband (UWB) communication systems over both AWGN and IEEE802.15.3a channels. The channel capacity of NPPM is determined for a time-hopping multiple access UWB communication system. The error probability and performance bounds are derived for a multiuser environment. It is shown that with proper selection of the pulse waveform and modulation index, NPPM can achieve a higher capacity than orthogonal PPM, and also provide better performance than orthogonal PPM with the same throughput.

  • Distributed Interference Matched Scheduling for Multicell Environment

    Xingzai LV  Jinkang ZHU  Ling QIU  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2112-2121

    We address the problem of multiuser co-channel interference scheduling in multicell interference-limited networks. Our target is to optimize the network capacity under the SIR-balanced power control policy. Since it's difficult to optimize the original problem, we derive a new problem which maximizes the lower bound of the network capacity. Based on the analysis of this new problem, we propose an interference matched scheduling algorithm. This algorithm considers the caused co-channel interference and the channel conditions to schedule the "matched" users at the same time. We prove that this interference matched scheduling algorithm optimizes the lower bound of the network capacity for any arbitrary numbers of cells and users. Moreover, this scheduling method is low-complexity and can be implemented in a fully distributed fashion. Simulation results reveal that the performance of the proposed algorithm achieves near optimal capacity, even though it does not optimize the network capacity directly. Finally, the proposed algorithm holds a great gain over formerly proposed round robin and power matched scheduling method, especially when the scale of the network is large.

  • Macro-Diversity Scheme for a Point-to-Multipoint Communication System by means of D-STBC Method in Fast Fading Environment

    Subrata Kumar BISWAS  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2122-2130

    In recent years, the space-time block coding (STBC) method has attracted attention to provide transmission diversity in mobile communication systems. Although the STBC method is very effective in slow fading environments, its performance in fast fading environments has yet to be clearly verified. In this paper we propose a railway radio communication system using space-time coding in cooperation with two base stations. Here, we considered the differential STBC (D-STBC) method in railway communication system to overcome difficulties caused by the fast fading environment. We have compared the performance of STBC and D-STBC method where there is frequency offset between two base stations. Moreover, we have presented the simulation result of overall performance of the system including frequency offset and transmission time delay when operating D-STBC method. The overall evaluation on this paper shows that the D-STBC method is suitable for realizing highly reliable railway communication systems.

  • A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers

    Yung-Yi WANG  Wen-Hsien FANG  Jiunn-Tsair CHEN  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2131-2141

    We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.

  • Iterative Receiver with Enhanced Spatial Covariance Matrix Estimation in Asynchronous Interference Environment for 3GPP LTE MIMO-OFDMA System

    Jun-Hee JANG  Jung-Su HAN  Sung-Soo KIM  Hyung-Jin CHOI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2142-2152

    To mitigate the asynchronous ICI (Inter-Cell Interference), SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise should be accurately estimated for MIMO-OFDMA (Multiple-input Multiple-output-Orthogonal Frequency Division Multiple Access) system. Generally, it is assumed that the SCM of the asynchronous ICI plus background noise is estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and considering that training symbols are not appropriate for OFDMA system such as LTE (3GPP Long Term Evolution). Therefore, noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce noise effectively minimizing estimation error caused by the spectral leakage but also can be implemented using frequency-domain weighted moving average filter easily. We also consider the iterative CFR (Channel Frequency Response) and SCM estimation method which can effectively reduce the estimation error of both CFR and SCM, and improve the performance for LTE system. By using computer simulation, we show that the proposed method can provide up to 2.5 dB SIR (Signal to Interference Ratio) gain compared with the conventional method, and verify that the proposed method is attractive and suitable for implementation with stable operation.

  • An Application of Vector Coding with IBI Cancelling Demodulator and Code Elimination to Delay Spread MIMO Channels

    Zhao LI  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2153-2159

    Vector Coding (VC) is a novel vector modulation scheme that partitions a SISO (Single-Input Single-Output) channel into orthogonal subchannels by singular value decomposition (SVD). Because the orthogonal transmissions enabled by VC cannot cope with inter block interference (IBI) that is inevitable in delay spread channels, this paper proposes an IBI cancelling demodulator which can remove IBI by an iterative technique. We also show that code elimination in which insignificant eigencodes with lowermost eigenvalues are intentionally removed from transmission vectors greatly reduces BER (Bit Error Rate). The VC which utilizes the IBI cancelling demodulator and code elimination to reduce BER is compared with the original VC in not only delay spread SISO channels but also delay spread MIMO (Multi-Input Multi-Output) channels while emphasis is placed on the MIMO cases. Simulation results show that, under a predetermined BER, the enhanced MIMO-VC can improve effective transmission rate than the natural extension of VC to delay spread MIMO channels.

  • Scheduling Algorithm to Provide QoS over a Shared Wireless Link

    Augusto FORONDA  Chikara OHTA  Hisashi TAMAKI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2160-2167

    Several scheduling algorithms have been proposed for the downlink of a Code Division Multiple Access (CDMA) system with High Data Rate (HDR). Modified Largest Weighted Delay First (M-LWDF) scheduling algorithm selects a user according to the user current channel condition, user head-of-line packet delay and user Quality of Service (QoS) requirement. Proportional Fair (PF) scheduling algorithm has also been proposed for CDMA/HDR system and it selects a user according to the ratio of the user current channel rate and the user average channel rate, which provides good performance in terms of fairness. However, when variable bit rate (VBR) traffic is considered under different channel conditions for each user, both schedulers' performance decrease. M-LWDF scheduler can not guarantee the QoS requirement to be achieved and PF scheduler can not achieve a good fairness among the users. In this work, we propose a new scheduling algorithm to enhance M-LWDF and PF schedulers performance. Proposed scheduler selects a user according to the user input traffic characteristic, user current channel condition and user QoS requirement, which consists of a delay value with a maximum violation probability. We consider the well-known effective bandwidth expression, which takes into account the user QoS requirement and the user input traffic characteristics, to select a user to be scheduled. Properties of the proposed scheduling algorithm are investigated through simulations with constant bit rate (CBR) and VBR flows and performance comparisons with M-LWDF and PF schedulers. The results show a better performance of the proposed scheduler compared with M-LWDF and PF schedulers.

  • Throughput Analysis of the IEEE 802.11 DCF under Both Saturated and Non-saturated Conditions

    Chao LIU  Mengtian RONG  

     
    PAPER-Terrestrial Radio Communications

      Page(s):
    2168-2174

    The IEEE 802.11 standard has been extensively deployed all over the world. Many studies have been put on its performance, especially throughput. Most research focused on the analysis of saturated throughput, but non-saturated situation is more usual in practice. By extending a saturation throughput model, a concise and novel model is proposed in this paper, which can be used to analyze both saturated and non-saturated conditions. Moreover, the model can also deal with the heterogeneous condition, which allows stations to have different traffic. Different access mechanisms and packet payloads are used in simulation to validate it, and the results show that the model is accurate.

  • Analysis of Incoming Wave Distribution in Vertical Plane in Urban Area and Evaluation of Base Station Antenna Effective Gain

    Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Antennas and Propagation

      Page(s):
    2175-2181

    In order to reduce the amount of interference to neighboring cells in cellular systems, we generally use base station (BS) antennas that have sharp beam patterns in the vertical plane; however, the distribution of incoming waves at the BS affects the effective gain of the BS antennas which have directional pattern. Therefore, we have to clarify the characteristics of the distribution of the incoming waves. A recent trend is decreasing the cell radius; therefore, clarifying the distribution of the incoming waves at the BS when mobile stations (MSs) are located within 1 km from the BS is important. In this report, we evaluate the effective gains of the BS antennas, which are calculated using the measured vertical power angle profile (PAP). Moreover, we examine the application of a simple incoming wave model to the evaluation of the antenna effective gains. In the model, the average power of the incoming waves is set to the Laplacian function and each wave is changed to a lognormal distribution. The antenna effective gain calculated using the model agrees well with that calculated using the measured PAP.

  • Hodgkin-Huxley Model-Based Analysis of Electric-Field Effect on Nerve Cell Using Self-Organizing Map

    Masao MASUGI  Kazuo MURAKAWA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Page(s):
    2182-2192

    This paper describes an analysis of the effects of electric field on nerve cells by using the Hodgkin-Huxley model. When evaluating our model, which combines an additional ionic current source and generated membrane potential, we derive the peak-to-peak value, the accumulated square of variation, and Kolmogorov-Sinai (KS) entropy of the cell-membrane potential excited by 10, 100, 1 k, and 10 kHz-sinusoidal electric fields. In addition, to obtain a comprehensive view of the time-variation patterns of our model, we used a self-organizing map, which provides a way to map high-dimensional data onto a low-dimensional domain. Simulation results confirmed that lower-frequency electric fields tended to increase fluctuations of the cell-membrane potential, and the additional ionic current source was a more dominant factor for fluctuations of the cell-membrane potential. On the basis of our model, we visually confirmed that the obtained data could be projected onto the map in accordance with responses of cell-membrane potential excited by electric fields, resulting in a combined depiction of the effects of KS entropy and other parameters.

  • Evaluation of EMI Reduction Effect of Guard Traces Based on Imbalance Difference Model

    Tohlu MATSUSHIMA  Tetsushi WATANABE  Yoshitaka TOYOTA  Ryuji KOGA  Osami WADA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Page(s):
    2193-2200

    Placing a guard trace next to a signal line is the conventional technique for reducing the common-mode radiation from a printed circuit board. In this paper, the suppression of common-mode radiation from printed circuit boards having guard traces is estimated and evaluated using the imbalance difference model, which was proposed by the authors. To reduce common-mode radiation further, a procedure for designing a transmission line with guard traces is proposed. Guard traces connected to a return plane through vias are placed near a signal line and they decrease a current division factor (CDF). The CDF represents the degree of imbalance of a transmission line, and a common-mode electromotive force depends on the CDF. Thus, by calculating the CDF, we can estimate the reduction in common-mode radiation. It is reduced not only by placing guard traces, but also by narrowing the signal line to compensate for the variation in characteristic impedance due to the guard traces. Experimental results showed that the maximum reduction in common-mode radiation was about 14 dB achieved by placing guard traces on both sides of the signal line, and the calculated reduction agreed with the measured one within 1 dB. According to the CDF and characteristic impedance calculations, common-mode radiation can be reduced by about 25 dB while keeping the characteristic impedance constant by changing the gap between the signal line and the guard trace and by narrowing the width of the signal line.

  • A Power-Saving Data Aggregation Algorithm for Byzantine Faults in Wireless Sensor Networks

    Yu-Chen KUO  Ji-Wei CHEN  

     
    PAPER-Sensing

      Page(s):
    2201-2208

    The wireless sensor network is a resource-constrained self-organizing system that consists of a large number of tiny sensor nodes. Due to the low-cost and low-power nature of sensor nodes, sensor nodes are failure-prone when sensing and processing data. Most presented fault-tolerant research for wireless sensor networks focused on crash faults or power faults and less on Byzantine faults. Hence, in this paper, we propose a power-saving data aggregation algorithm for Byzantine faults to provide power savings and high success rates even in the environment with high fault rates. The algorithm utilizes the concept of Byzantine masking quorum systems to mask the erroneous values and to finally determine the correct value. Our simulation results demonstrate that when the fault rate of sensor nodes is up to 50%, our algorithm still has 48% success rate to obtain the correct value. Under the same condition, other fault-tolerant algorithms are almost failed.

  • CFAR Detector Based on Goodness-of-Fit Tests

    Xiaobo DENG  Yiming PI  Zhenglin CAO  

     
    PAPER-Sensing

      Page(s):
    2209-2217

    This paper develops a complete architecture for constant false alarm rate (CFAR) detection based on a goodness-of-fit (GOF) test. This architecture begins with a logarithmic amplifier, which transforms the background distribution, whether Weibull or lognormal into a location-scale (LS) one, some relevant properties of which are exploited to ensure CFAR. A GOF test is adopted at last to decide whether the samples under test belong to the background or are abnormal given the background and so should be declared to be a target of interest. The performance of this new CFAR scheme is investigated both in homogeneous and multiple interfering targets environment.

  • Double Reply ToA Algorithm Robust to a Timer Offset for a UWB System

    Jae Ho HWANG  Jae Moung KIM  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    2218-2221

    This paper deals with a new ranging algorithm in an ultra-wideband system. The conventional ToA algorithm determines the distance between devices by estimating the propagation time. However, due to different timer offsets in each device, the accuracy of this estimation can be compromised. In this paper, a double reply ToA algorithm is proposed to increase the ranging accuracy without increasing hardware complexity.

  • An Improved Encoder for Joint Source-Channel Decoder Using Conditional Entropy Constraint

    Moonseo PARK  Seong-Lyun KIM  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    2222-2225

    When the joint source-channel (JSC) decoder is used for source coding over noisy channels, the JSC decoder may invent errors even though the received data is not corrupted by the channel noise, if the JSC decoder assumes the channel was noisy. A novel encoder algorithm has been recently proposed to improve the performance of the communications system under this situation. In this letter, we propose another algorithm based on conditional entropy-constrained vector quantizer to further improve the encoder. The algorithm proposed in this letter significantly improves the performance of the communications system when the hypothesized channel bit error rate is high.

  • A Novel Evaluation Method for the Downlink Capacity of Distributed Antenna Systems

    Wei FENG  Yifei ZHAO  Ming ZHAO  Shidong ZHOU  Jing WANG  Minghua XIA  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    2226-2230

    This letter focuses on the simplified capacity evaluation for the downlink of a distributed antenna system (DAS) with random antenna layout. Based on system scale-up, we derive a good approximation of the downlink capacity by developing the results from random matrix theory. We also propose an iterative method to calculate the unknown parameters in the approximated expression of the downlink capacity. The approximation is illustrated to be quite accurate and the iterative method is shown to be quite efficient by Monte Carlo simulations.

  • Reduced Constraint Set Linear Program for Tone Reservation in Multicarrier Modulation

    Abolfazl GHASSEMI  T. Aaron GULLIVER  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    2231-2234

    Tone reservation (TR) has been proposed for peak to average power reduction (PAPR) in real-baseband multicarrier systems [1]. In this technique, the peak reduction signal is computed by optimization via linear programming (LP). As shown in [1], the computational complexity of the LP optimization is largely determined by the complexity of the inverse fast Fourier transform (IFFT) algorithm. In this paper, we use submatrices of the inverse fast Fourier transform (IFFT) to reduce the number of constraints in the LP-based optimization. We show that a significant complexity reduction can be achieved compared to the conventional TR algorithm, with similar PAPR reduction.

  • A Blind OFDM Detection and Identification Method Based on Cyclostationarity for Cognitive Radio Application

    Ning HAN  Sung Hwan SOHN  Jae Moung KIM  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    2235-2238

    The key issue in cognitive radio is to design a reliable spectrum sensing method that is able to detect the signal in the target channel as well as to recognize its type. In this paper, focusing on classifying different orthogonal frequency-division multiplexing (OFDM) signals, we propose a two-step detection and identification approach based on the analysis of the cyclic autocorrelation function. The key parameters to separate different OFDM signals are the subcarrier spacing and symbol duration. A symmetric peak detection method is adopted in the first step, while a pulse detection method is used to determine the symbol duration. Simulations validate the proposed method.

  • An Optical Transimpedance Amplifier Using an Inductive Buffer Stage Technique

    Sang Hyun PARK  Quan LE  Bo-Hun CHOI  

     
    LETTER-Devices/Circuits for Communications

      Page(s):
    2239-2242

    An inductive buffer peaking technique is proposed and demonstrated to extend the bandwidth of a 10-Gbit/s transimpedance amplifier (TIA) for optical communications. A TIA using this peaking technique is fabricated based on InGaP/GaAs HBT technology. The advantage of the proposed technique is verified by comparisons based on simulations and experiments. For these comparisons, three different types of TIAs using a basic gain stage, a shunt peaking gain stage and the proposed gain stage, respectively, are fabricated and measured. The measured performance of the proposed TIA shows that this bandwidth extension technique using inductive buffer peaking can be applied to circuit designs which demand wideband frequency response with low power consumption.

  • Optimum Hard-Decision Detector for Energy-Spreading Transform Based Multiple Access

    Jaeho LEE  Taewon HWANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    2243-2246

    Multiple access based on energy spreading transform (EST) in [1] has been shown to effectively separate multiuser signals in an iterative manner. In this paper, an optimum hard-decision detector for the EST-based multiple access is proposed. The proposed scheme employs minimum mean square error (MMSE) processing at each iteration to enhance the performance of the original scheme. Analysis and simulation results show the significant performance improvement of the proposed scheme over the original method.

  • Joint Estimation of Carrier Frequency Offset and Channel and Symbol Timing for OFDM

    Shaopeng WANG  Shihua ZHU  Yi LI  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    2247-2250

    A method that jointly estimates the carrier frequency offset (CFO), channel and symbol timing for orthogonal frequency division multiplexing (OFDM) is proposed in this letter. Based on the characteristic of cyclic training symbols in the frequency domain, the joint estimation is divided into three separate estimations. The CFO and equivalent channel impulse response (CIR) are first estimated by an iterative joint maximum likelihood estimation (JMLE), then the symbol timing offset (STO) is obtained by the assistance of equivalent CIR, finally the CIR is calculated based on the equivalent CIR after known STO and CFO. In our proposed method, the effect of imperfect CIR is considered in the CFO estimator. Moveover, a procedure, which eliminates the inverse operation of a covariance matrix at each iterative process, was adopted to reduce the complexity of our proposed method. Simulations show that the proposed method is capable of retaining the same bit error rate as joint CFO and CIR maximum likelihood estimation without symbol timing error.

  • Applicability of Large Effective Area PCF to DRA Transmission

    Chisato FUKAI  Kazuhide NAKAJIMA  Takashi MATSUI  

     
    LETTER-Optical Fiber for Communications

      Page(s):
    2251-2253

    We describe the applicability of photonic crystal fiber (PCF) with an enlarged effective area Aeff to a distributed Raman amplification (DRA) transmission. We investigate the DRA transmission performance numerically over a large Aeff PCF taking account of the signal-to-noise ratio (SNR) improvement RSNR in the S, C, and L bands. We show that an RSNR of 3 dB can be expected by utilizing DRA with a maximum pump power of 500 mW when the Aeff of the PCF is 230 µm2.

  • Two-Step Fair Scheduling of Continuous Media Streams over Error-Prone Wireless Channels

    Soohyun OH  Jin Wook LEE  Taejoon PARK  Tae-Chang JO  

     
    LETTER-Switching for Mobile Communications

      Page(s):
    2254-2258

    In wireless cellular networks, streaming of continuous media (with strict QoS requirements) over wireless links is challenging due to their inherent unreliability characterized by location-dependent, bursty errors. To address this challenge, we present a two-step scheduling algorithm for a base station to provide streaming of continuous media to wireless clients over the error-prone wireless links. The proposed algorithm is capable of minimizing the packet loss rate of individual clients in the presence of error bursts, by transmitting packets in the round-robin manner and also adopting a mechanism for channel prediction and swapping.

  • Performance Analysis of an Opportunistic Transmission Scheme for Wireless Sensor Networks

    Jeong Geun KIM  Ca Van PHAN  Wonha KIM  

     
    LETTER-Network

      Page(s):
    2259-2262

    We analyze the performance of an opportunistic transmission strategy for Wireless Sensor Networks (WSNs). We consider a transmission strategy called Binary Decision-Based Transmission (BDT), which is a common form of opportunistic transmission. The BDT scheme initiates transmission only when the channel quality exceeds the optimum threshold to avoid unsuccessful transmissions that waste energy. We formulate the Markov Decision Process (MDP) to identify an optimum threshold for transmission decisions in the BDT scheme.

  • Network-Aware Overlay Multicast for Large Data Dissemination

    Joonbok LEE  Kilnam CHON  

     
    LETTER-Network

      Page(s):
    2263-2266

    In this paper, we propose a network-aware overlay multicast (NAOM) technique for large data dissemination in a well-managed overlay network. To improve the throughput, NAOM utilizes forward-only hosts; these hosts participate in the overlay network but are not members of the multicast. With the inclusion of the forward-only hosts, data slices can detour bottleneck links and more resources can be used to build efficient multicast trees. Large data are divided into fixed-size slices, and the slices are delivered simultaneously to multicast receivers along the multiple multicast trees. We model the problem of building efficient multicast trees with the inclusion of forward-only hosts. The problem is an NP-hard problem, and we introduce a polynomial time heuristic algorithm. Furthermore, we propose a dynamic scheduling scheme for the transfer of data along the evaluated multicast trees. Our experimental results in a real network environment show an improvement of the throughput but at the cost of additional resource consumption of forward-only nodes.

  • QoS Supported Dynamic Channel Scanning for Seamless Handovers in Wireless Networks

    Sang-Jo YOO  Nada GOLMIE  

     
    LETTER-Network

      Page(s):
    2267-2270

    Channel scanning is an important aspect of seamless handovers since it is required in order to find a target point of attachment (PoA). However, channel scanning in single radio devices may cause severe service disruptions with the current PoA so that the provided QoS will be further degraded during a handover. In this letter, we propose a dynamic channel scanning algorithm that supports QoS. Simulation results show that the proposed mechanism reduces the service disruptions and provides the desired QoS to users during the scanning period.

  • One-Way Ranging Method Using Reference-Based Broadcasting Messages for Wireless Sensor Networks

    Cheolhyo LEE  Yoon-Seok NAM  Jae-Young KIM  You-Ze CHO  

     
    LETTER-Network

      Page(s):
    2271-2274

    This paper proposes a one-way ranging method using reference-based broadcasting messages. The method is based on impulse radio UWB (Ultra-wideband) for wireless sensor networks. The proposed method reduces traffic overheads and increases the ranging accuracy using frequency offsets and counter information based on virtually synchronized counters between RNs (Reference Nodes) and MNs (Mobile Nodes). Simulation results show that the proposed method can alleviate the ranging errors comparing to SDS-TWR (Symmetric Double-Sided Two-Way Ranging) method in terms of the frequency offset.

  • Code Combining Based Cooperative LEACH Protocol for Wireless Sensor Networks

    ASADUZZAMAN  Hyung-Yun KONG  

     
    LETTER-Network

      Page(s):
    2275-2278

    This letter proposes a simple modification of LEACH protocol to exploit its multi-hop scenario for user cooperation. Instead of a single cluster-head we propose M cluster-heads in each cluster to obtain the diversity of order M. All cluster-heads gather data from all sensor nodes within the cluster using the same technique as LEACH. Cluster-heads transmit gathered data cooperatively towards the destination or higher order cluster-head. We propose a code combining based cooperative protocol. We also develop the upper bounds on frame error rate (FER) for our proposal. Simulation and analysis show that our proposal can significantly prolong the system lifetime.

  • On Window Control Algorithm over Wireless Cellular Networks with Large Delay Variation

    Ho-Jin LEE  Hee-Jung BYUN  Jong-Tae LIM  

     
    LETTER-Network

      Page(s):
    2279-2282

    In addition to high bit error rates, large and sudden variations in delay often occur in wireless cellular networks. The delay can be several times the typical round-trip time, which can cause the spurious timeout. In this letter, we propose a new window control algorithm to improve TCP performance in wireless cellular networks with large delay variation and high bit error rates. Simulation results illustrate that our proposal improves the performance of TCP in terms of fairness and link utilization.

  • Dynamic Splitting: An Enhanced Query Tree Protocol for RFID Tag Collision Arbitration

    Jihoon CHOI  Wonjun LEE  

     
    LETTER-Network

      Page(s):
    2283-2286

    To reduce RFID tag identification delay, we propose a novel Dynamic Splitting protocol (DS) which is an improvement of the Query tree protocol (QT). DS controls the number of branches of a tree dynamically. An improved performance of DS relative to QT is verified by analytical results and simulation studies.

  • A Security Analysis on Kempf-Koodli's Security Scheme for Fast Mobile IPv6

    Ilsun YOU  Kouichi SAKURAI  Yoshiaki HORI  

     
    LETTER-Internet

      Page(s):
    2287-2290

    Recently, the security scheme, proposed by Kempf and Koodli, has been adopted as a security standard for Fast handover for Mobile IPv6. But, it does not prevent denial of service attacks while resulting in high computation cost. More importantly, we find that it is still vulnerable to redirection attacks because it fails to secure the Unsolicited Neighbor Advertisement messages. In this paper, Kempf-Koodli's scheme is formally analyzed through BAN-logic and its weaknesses are demonstrated.

  • A New Queue Management Scheme for AIMD Based Flows with Proportional Fair Scheduling in Wireless Networks

    Jing WU  Jeonghoon MO  Richard J. LA  

     
    LETTER-Internet

      Page(s):
    2291-2294

    We study the interaction of TCP and the proportional fair scheduling algorithm in wireless networks. We show that the additive increase and multiplicative decrease algorithm of TCP can favor bad channel users, which results in inefficient use of radio resources. To remedy the problem, a proportional queue management scheme is proposed. The effectiveness of the algorithm is shown by simulations.

  • Blind Maximum Doppler Frequency Estimation for OFDM Based Communication Systems

    Yi WANG  Li Hua LI  Ping ZHANG  Ze Min LIU  Ping WU  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2295-2297

    In this letter, a novel blind maximum Doppler frequency estimation algorithm for OFDM based systems is proposed. We only utilize part of the subcarriers which are modulated by constant-envelope modulation such as QPSK. The received magnitude of these subcarriers is obtained and its power spectral density (PSD) is estimated by classic periodogram method. The maximum Doppler frequency is derived by finding the edge point of PSD. Different from the conventional PSD method, our method does not need the channel estimates, the estimation precision is also increased. Simulation results show that the performance of our method is good for a wide range of Doppler spread values.

  • Frequency-Domain Partial Response Coding for Alamouti SFBC-OFDM System in Doubly Selective Channels

    Jung Min CHOI  Jae Hong LEE  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2298-2302

    Time variation within an OFDM symbol causes inter-carrier interference (ICI). In this letter, frequency-domain partial response coding (PRC) is investigated to reduce ICI in the Alamouti SFBC-OFDM system. Based on the expression of the ICI power in the SFBC-OFDM system with PRC, the near-optimal weights of PRC are derived. Simulation results show that the PRC scheme can reduce ICI effectively.

  • A Multi-Stage Hybrid Scheduler for Codebook-Based MU-MIMO System

    Jingxiu LIU  Xiaoming SHE  Lan CHEN  Hidekazu TAOKA  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2303-2307

    In this paper, we propose a multi-stage hybrid scheduling scheme for codebook-based precoding systems, which provides a framework to apply different scheduling criterions at different scheduling stages for selecting user equipment (UEs). Numerical simulation results show that the proposed scheme effectively fills the performance gap between maximum carrier-to-interference (Max C/I) power ratio and Proportional Fairness (PF) methods, and provides an important means at the media access control (MAC) layer to lever between aggregate cellular throughput and geometry-specific per-user fairness, in order to meet the requirements of more precise quality of service (QoS) provision for future mobile communication systems.

  • Training Sequence Design for Low Complexity Channel Estimation in Transmit Diversity TDS-OFDM System

    Fang YANG  Kewu PENG  Jun WANG  Jian SONG  Zhixing YANG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2308-2311

    In this paper, estimation accuracy of channel frequency response (CFR) according to least squared (LS) criterion with two transmit antennas for the time domain synchronous-orthogonal frequency division multiplexing (TDS-OFDM) system is investigated. To minimize the estimation variance, the conditions to guide the pseudo-noise (PN) sequence design are discussed and three training sequence design schemes are proposed accordingly. Simulations show that the proposed PN sequence design scheme is effective, while the implementation complexity for the channel estimation is low.

  • Parallel Proportion Fair Scheduling in DAS with Partial Channel State Information

    Zhanjun JIANG  Jiang WU  Dongming WANG  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2312-2315

    A parallel multiplexing scheduling (PMS) scheme is proposed for distributed antenna systems (DAS), which greatly improves average system throughput due to multi-user diversity and multi-user multiplexing. However, PMS has poor fairness because of the use of the "best channel selection" criteria in the scheduler. Thus we present a parallel proportional fair scheduling (PPFS) scheme, which combines PMS with proportional fair scheduling (PFS) to achieve a tradeoff between average throughput and fairness. In PPFS, the "relative signal to noise ratio (SNR)" is employed as a metric to select the user instead of the "relative throughput" in the original PFS. And only partial channel state information (CSI) is fed back to the base station (BS) in PPFS. Moreover, there are multiple users selected to transmit simultaneously at each slot in PPFS, while only one user occupies all channel resources at each slot in PFS. Consequently, PPFS improves fairness performance of PMS greatly with a relatively small loss of average throughput compared to PFS.

  • Fast Adaptive Beamforming for Coherent Interference Cancellation Using Forward/Backward Correlations

    Yang-Ho CHOI  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2316-2319

    An adaptive beamforming method for the rejection of coherent interference signals is presented which exploits forward and backward correlations. The proposed method, in which the effective degree of freedom of the beamformer is increased by virtue of its use of both types of correlation, can cancel more coherent interference signals and provide better performance than the existing one that uses the forward correlation only.

  • Space-Time Cyclic Delay Diversity Encoded Cooperative Transmissions for Multiple Relays

    Jin-Hyuk SONG  Jee-Hoon KIM  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2320-2323

    Among spatial diversity schemes, orthogonal space-time block code (OSTBC) and cyclic delay diversity (CDD) have been widely studied for the cooperative wireless relaying system. However, conventional OSTBC and CDD cannot cope with change in the number of relays owing to low throughput or error performance. In this letter, we propose the space-time cyclic delay diversity (STCDD) scheme which provides good error performance and full rate. Simulation results show that bit error rate (BER) performance of the proposed STCDD is superior to that of OSTBC and CDD when sufficient quality of source-relay channels are guaranteed.

  • Phase-Silence-Shift-Keying for Power-Efficient Modulator

    Dong Kyoo KIM  Hyung Soo LEE  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2324-2326

    We propose a new modulation, phase-silence-shift-keying (PSSK), whose symbol error rate (SER) performance is improved by 6 dB compared with phase-shift-keying (PSK). To prove this, theoretical analysis of probability of error is provided and simulation results are presented.

  • A Dynamic Downlink Load Control Scheme for WCDMA and HSDPA Systems

    Chang Soon KANG  Junsu KIM  Dan Keun SUNG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2327-2331

    Mutual interference among users can abruptly increase othercell interference and cause overload situation in coexisting WCDMA and HSDPA systems. Traffic overloading can degrade the performance of the systems. This letter proposes a new dynamic downlink load control (DDLC) algorithm to reduce performance degradation due to overload in the coexistence of WCDMA and HSDPA systems. With the proposed algorithm, the downlink load is controlled according to load states classified by two load-control thresholds, and traffic overloading is alleviated by dynamically adjusting the CQI values reported by users, based on the downlink load as well as channel variations. The proposed algorithm is simulated and results show that the DDLC scheme improves the performance of both WCDMA and HSDPA systems in terms of outage probability, total system throughput, and radio resource utilization.

  • Two Adaptive Energy Detectors for Cognitive Radio Systems

    Siyang LIU  Gang XIE  Zhongshan ZHANG  Yuanan LIU  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2332-2335

    Two adaptive energy detectors are proposed for cognitive radio systems to detect the primary users. Unlike the conventional energy detector (CED) where a decision is made after receiving all samples, our detectors make a decision with the sequential arrival of samples. Hence, the sample size of the proposed detectors is adaptive. Simulation results show that for a desired performance, the average sample size of the proposed detectors is much less than that of the CED. Therefore, they are more agile than the CED.

  • Packet Utility Based Packet Scheduling for OFDMA Networks with Heterogeneous Delay Requirements

    Gangming LV  Shihua ZHU  Zhimeng ZHONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2336-2340

    A delay-oriented packet scheduling scheme is proposed for downlink OFDMA networks with heterogeneous delay requirements. Using a novel packet utility concept, the proposed algorithm can exploit diversity from traffic characteristics and requirements to improve delay performance for delay sensitive traffics. Besides, the proposal also shows good ability in balancing fairness and efficiency. Simulation results show that our proposal outperforms existing delay-oriented scheduling schemes in terms of both delay performance and spectrum efficiency.

  • On the Optimal Transmission in Multihop Relay Networks over Rayleigh Fading Channels

    Guobing LI  Shihua ZHU  Hui HUI  Yongliang GUO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    2341-2344

    In this letter we investigate the relaying strategies for multihop transmission in wireless networks over Rayleigh fading channels. Theoretical analysis reveals that equally allocating power among all transmitters and placing relays equidistantly on the line between source and destination are optimal in terms of outage capacity. Then equal time duration for the transmission of each hop is also proved to be optimal. Furthermore, the optimum number of hops is also derived and shown to be inversely proportional to the signal-to-noise ratio (SNR). Numerical simulations agree well with the reported theoretical results.

  • A New Channel-Aware Rate Adaptation in High Speed WLANs

    Navrati SAXENA  Abhishek ROY  

     
    LETTER-Terrestrial Radio Communications

      Page(s):
    2345-2348

    In this letter we propose an advanced rate adaptation algorithm that intelligently uses the channel statistics to make fast and efficient selection of transmission rates. Our implementation and simulation results prove that the proposed strategy achieves major latency and throughput improvements on 802.11n products and existing related protocols. The entire work is on a software module, thus providing adaptability, cost-effectiveness, with no hardware changes.

  • A Multi-Band Planar Monopole Antenna with Slits and a Stub

    Seung-Bok BYUN  Gyu-Tae BACK  Jong-Hyuk LIM  Tae-Yeoul YUN  

     
    LETTER-Antennas and Propagation

      Page(s):
    2349-2351

    This paper presents a planar monopole antenna with slits and a stub for multi-band operation in vehicles. The proposed antenna is at least 55% smaller than the regular rectangular monopole antenna and covers eight wireless application bands. Slits cut into the rectangular monopole alter the surface current paths so that the band coverage is expanded. A long bent-stub is also added to cover the lowest service band.

  • Impedance Analysis of Printed Antenna on Three-Dimensional High-Permittivity Dielectric Substrate Using Mixed-Domain MoM

    Amin SAEEDFAR  Hiroyasu SATO  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Page(s):
    2352-2355

    An integral equation approach with a new solution procedure using moment method (MoM) is applied for the computation of coupled currents on the surface of a printed dipole antenna and inside its high-permittivity three-dimensional dielectric substrate. The main purpose of this study is to validate the accuracy and reliability of the previously proposed MoM procedure by authors for the solution of a coupled volume-surface integral equations system. In continuation of the recent works of authors, a mixed-domain MoM expansion using Legendre polynomial basis function and cubic geometric modeling are adopted to solve the tensor-volume integral equation. In mixed-domain MoM, a combination of entire-domain and sub-domain basis functions, including three-dimensional Legnedre polynomial basis functions with different degrees is utilized for field expansion inside dielectric substrate. In addition, the conventional Rao-Wilton-Glisson (RWG) basis function is employed for electric current expansion over the printed structure. The accuracy of the proposed approach is verified through a comparison with the MoM solutions based on the spectral domain Green's function for infinitely large substrate and the results of FDTD method.

  • Novel Electromagnetic Bandgap with Triangular Unit Cells for Ultra-Broadband Suppression of Simultaneous Switching Noise

    Jong Hwa KWON  Dong Uk SIM  Sang Il KWAK  Jong Gwan YOOK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Page(s):
    2356-2358

    To build a stable power distribution network for high-speed digital systems, simultaneous switching noise (SSN) should be sufficiently suppressed in multi-layer PCBs and packages. In this paper, a novel hybrid uni-planar compact electromagnetic bandgap (UC-EBG) with two triangular-type unit cells designed on power/ground planes is proposed for the ultra-broadband suppression of SSN. The SSN suppression performance of the proposed structure is validated both numerically and experimentally. A -35 dB suppression bandwidth for SSN is achieved, starting at 800 MHz and extending to 15 GHz and beyond, thereby covering almost the entire noise band.

  • Combining Push and Pull Scheduling for Mobile Data Broadcasting in Convergence Networks

    Sang Hyuk KANG  Yoon Goo NAM  

     
    LETTER-Broadcast Systems

      Page(s):
    2359-2362

    Considering digital multimedia broadcasting (DMB) with reverse channels, we propose a novel scheduling algorithm for data dissemination as a combination of push and pull schemes. After collecting statistics of requests from clients, the server partitions the data items into hot and cold sets, according to the number of requests. The broadcast server schedules and broadcasts hot items periodically based on a push algorithm. On an empty slot between hot items scheduled, the server broadcasts a cold item based on an on-demand pull mechanism. Simulations show that our proposed algorithm achieves high successful response ratio with a response time small enough to be practical.